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Introduction

Oral lichen planus (OLP) is a chronic inflammatory autoim-
mune disease. There are several clinical presentations of OLP,

including the classic white reticular pattern, erosive, atro-
phic, plaque, and bullous lesions. According to the modified
World Health Organization (WHO) diagnostic criteria of OLP,
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Abstract Objective The aim of this study was to employ artificial intelligence (AI) via convolu-
tional neural network (CNN) for the separation of oral lichen planus (OLP) and non-OLP
in biopsy-proven clinical cases of OLP and non-OLP.
Materials and Methods Data comprised of clinical photographs of 609 OLP and 480
non-OLP which diagnosis has been confirmed histopathologically. Fifty-five photo-
graphs from the OLP and non-OLP groups were randomly selected for use as the test
dataset, while the remaining were used as training and validation datasets. Data
augmentation was performed on the training dataset to increase the number and
variation of photographs. Performance metrics for the CNN model performance
included accuracy, positive predictive value, negative predictive value, sensitivity,
specificity, and F1-score. Gradient-weighted class activation mapping was also used to
visualize the important regions associated with discriminative clinical features on
which the model relies.
Results All the selected CNN models were able to diagnose OLP and non-OLP lesions
using photographs. The performance of the Xception model was significantly higher
than that of the other models in terms of overall accuracy and F1-score.
Conclusions Our demonstration shows that CNN models can achieve an accuracy of
82 to 88%. Xception model performed the best in terms of both accuracy and F1-score.
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2003, the erosive, atrophic, bullous, and plaque-like lesions
are the only accepted subtype in the presence of reticular
lesions.1 The clinical criteria of OLP diagnosis in modified
WHO 2003 include the presence of bilateral, more or less
symmetrical lesions and the presence of lace-like network of
slightly raised gray-white line.1 The histopathological crite-
ria of OLP in modified WHO 2003 include well-defined
lymphocytic band zone confined in the superficial connec-
tive tissue layer, basal cell layer liquefactive degeneration,
and absence of epithelial dysplasia.1 Another clinical spec-
trum of lesions resembling OLP, but with known causes,
includes oral lichenoid lesions (OLL). Clinical and histopath-
ological features cannot differentiate between these two
types of lesions. World Workshop in Oral Medicine IV in
2006 classified OLP and OLL into four distinctive groups:
classic OLP, oral lichenoid drug reactions, oral lichenoid
contact lesions, and oral lichenoid graft-versus host disease.2

Approximately 50% of patients with skin lesions also mani-
fest oral mucosal lesions, and 25% of patients with OLP
present with only oral lesions.3 OLP and OLL may involve
any part of the oral mucosa, predominantly the buccal
mucosa and gingiva and can also present as desquamative
gingivitis.

Currently, both OLP and OLL are classified as oral poten-
tially malignant disorders (OPMD).4 The malignant transfor-
mation rate of OLP is approximately 1.37% and is slightly
higher for OLL at 2.43%.5 Erosive type, female sex, tongue
lesions, smoking, alcoholism, and hepatitis C infection are
risk factors for malignant transformation of OLP and OLL.5,6

The clinical differential diagnosis of OLP and OLL includes
frictional keratosis, pseudomembranous candidiasis, ery-
thematous candidiasis, leukoplakia, lupus erythematosus,
pemphigus vulgaris, mucous membrane pemphigoid, and
chronic ulcerative stomatitis.

Artificial intelligence (AI) is a new technology that has
contributed to severalmedical and dentalfields. AI, including
machine learning (ML)7 and deep learning (DL), has shown
promising results and has been proven to be an effective
method for the diagnosis of oral diseases, such as dental
caries8 and odontogenic lesions.9

In DL, AI can imitate the human brain using the neural
network structure of the deep layer. The machine can
repeatedly learn and gain knowledge from the trained
data. The principles of DL involve the standard DL model,
convolutional neural network (CNN) using object recogni-
tion, and classification of images from the data put in the
system. For example, the difference in the gradient of radio-
density, either radiolucency or radiopacity, can be extracted
and analyzed using AI. AI takes the differences as an input
and differentiates between the two radiodensities by repeat-
ed learning. Moreover, the shape, contour, color, and pattern
of the objects can also be analyzed using AI.

In their study, Ariji et al showed that the sensitivity for
detecting metastatic and nonmetastatic lymph nodes in
computed tomography image reached 90 and 80%, respec-
tively.10 Oral cancer detection using CNN from photographic
images yielded a sensitivity of 94.9 and specificity of 88.7%.11

The application of AI can also be combined with other

modalities, such as fluorescent confocal microscopy, which
yields a sensitivity of 96%.12 Furthermore, histopathological
diagnosis of oral squamous cell carcinoma using CNN has a
sensitivity of 98% and specificity of 92%.13 The application of
CNNusing panoramic radiographs has also shown significant
results, including diagnosis of radiolucent lesions,14 mesio-
dens,15 taurodontism,16 cystic lesions,17 or even fractures.18

Clinical diagnosis of OLP and how to separate it fromother
white, white-red, and red lesions maybe difficult for general
practitioner. And there are no studies clarifying performance
of AI in OLP diagnosis before. Thus, in this research, we aimed
to employ AI via CNN for the differentiation of OLP and non-
OLP in biopsy-proven clinical cases of OLP and non-OLP.

Materials and Methods

Data Preparation
Clinical photographs of OLP and non-OLP lesions from the
archive of the College of Dental Medicine, Rangsit University,
were collected for this study. The convenience sampling
method was used to create the dataset which the total of
clinical photographs in the archive were 1089. The photo-
graphs were then categorized into two classes: 609 for OLP
and 480 for non-OLP lesions. The final diagnoses of both
groups of some lesions were confirmed histopathologically.
Non-OLP photographs include lesion that should be included
in the differential diagnoses of OLP such as hyperkeratosis,
oral epithelial dysplasia, carcinoma in situ, recurrent aph-
thous ulcer, traumatic ulcer, pemphigus vulgaris, mucous
membrane pemphigoid, lupus erythematosus, and erythem-
atous candidiasis.

The photographs were cropped to remove unnecessary
areas (e.g., medical instruments, hands, teeth) so that the
CNN could focus only on the OLP and non-OLP lesions. The
edited photographs were saved in 8-bit JPEG format.

The photographs were then separated into two datasets,
and 55 photographs from the OLP and non-OLP groups were
randomly selected for use as the test dataset. The remaining
datasets were used as training and validation datasets in a
ratio of 90:10, respectively. Data augmentation was per-
formed on the training dataset to increase the number and
variation of photographs.

Augmentation includes random rotation, random ver-
tical flip, and random horizontal flip. The angle of random
rotation ranged from �45 to 45 degrees. The augmenta-
tion was performed using the ImageDataGenerator func-
tion in the Tensorflow library. The function will generate
batches of tensor image data with real-time data
augmentation.

Usually, each pixel of an 8-bit JPEG imagewill have a value
ranging from 0 to 255, which is not appropriate for usewith a
CNN. Therefore, all photographs were further normalized by
dividing each value by 255, so that their pixel values ranged
from 0 to 1. Finally, each photograph was resized to a fixed
dimension of 256�256 pixels using the bilinear interpola-
tion method.

This research was approved by the Ethics Review Board of
Rangsit University (DPE. No. RSUERB2022–064).
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CNN for OLP and Non-OLP Diagnosis
CNN is one of the neural network models in deep neural
networks which is most applied to analyzing visual imagery.
There are other neural network models that performwell on
different types of data as well, such as fully connected neural
network, or recurrent neural network.

The widely-used CNN models include AlexNet, VGG-16,
Xception, and ResNet-50. In this study, the Xception,
ResNet152V2, and EfficientNetB3 models were chosen for
OLP and non-OLP lesion diagnosis because of their lowmodel
complexity and high classification accuracy on the ImageNet
classification19–21 task summarized by Keras. The difference
between each neural network is the architecture of the
neural network such as the number of parameters, number
of layers (i.e., depth), or the computation time as shown
in ►Table 1. The number of layers reported are all layer that
contains tunable parameters (i.e., changed over time due to
the training process). The types and order of the layer in each
neural network are also different that had already been
explained in previous study.19–21

The weights of the models were randomly generated and
optimized using adaptive moment estimation22 with a cate-
gorical cross-entropy loss, where the learning rate for updat-
ing the weight is fixed at 0.001. A batch size of 64 was set
using a 100-epochs training process. The model was trained
to classify two classes of data (OLP and non-OLP), as previ-
ously mentioned and shown in ►Fig. 1.

Training was performed on aworkstationwith 1�NVIDIA
GeForce RTX 3090 Ti graphics processing unit (24 GB mem-
ory). The program was developed with the relevant algo-
rithms from Python3.6 and TensorFlow2.4 on an Ubuntu
platform. The performance of the model was evaluated at
every epoch during the training using the inference loss and

accuracy from the validation dataset. After the training was
completed, the weights of the epoch with the lowest valida-
tion loss were used to diagnose each photograph in the
testing dataset. Performance metrics for the CNN model
performance in OLP and non-OLP diagnosis included accu-
racy, positive predictive value (PPV) (i.e., precision), negative
predictive value (NPV), sensitivity (i.e., recall), specificity,
and F1-score. The equation for each metric is summarized
in►Fig. 2. A true positive (TP) implies that the photograph is
an OLP and the model also predicts that it is an OLP. A false
negative (FN) indicates that the photograph is an OLP but the
model predicts a non-OLP. A false positive (FP) indicates that
the photograph is a non-OLP, but the model predicts an OLP.
A true negative (TN) indicates that the photograph is a non-
OLP and the model also predicted a non-OLP. Accuracy
reflects the overall performance of the model. PPV and
NPV represent the proportion of correctly diagnosed

Fig. 1 Framework of the method for oral lichen planus (OLP) and non-OLP lesion diagnosis using convolutional neural network.

Table 1 Accuracy, number of parameters, number of layers, and inference time of the selected model evaluated using Tesla A100
GPU when classifying ImageNet dataset

Model Accuracy Parameters Number of layers Time

Xception19 79.0% 22.9M 81 8.1ms

ResNet152V220 78.0% 60.4M 107 6.6ms

EfficientNetB321 81.6% 12.3M 210 8.8ms

Fig. 2 Metrics of performance for CNN models in OLP and non-OLP
diagnosis. CNN, convolutional neural network; FN, false negative; FP,
false positive; NPV, negative predictive value; OLP, oral lichen planus;
PPV, positive predictive value; TN, true negative; TP, true positive.
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photographs among the total photographs retrieved by the
model in its own class. Both sensitivity and specificity focus
on the proportion of correct predictions. While sensitivity
measures the proportion of correctly predicted positives out
of all the actual positive values, specificity measures the
proportion of correctly predicted negatives out of all the
actual negative values. The F1-score is the harmonic average
of PPV and sensitivity, which reflects the robustness of the
model.

Model Visualization and Case Review
Gradient-weighted class activation mapping (Grad-CAM)23

uses the gradientsflowing into the last convolutional layer to
create a map that localizes and highlights important regions
relevant tomodel prediction in an image. In this study, Grad-
CAM was also used to visualize the important regions
associated with discriminative clinical features on which
the model relies. The red area indicates the more important
features, whereas the blue color indicates the opposite. This
color visualization reveals the underlying mechanism of the
model’s prediction. The photograph with the red color
visualized in an unusual area was further analyzed by an
experienced pathologist by reviewing the photograph along
with the model visualization to determine the potential
causes of such a scenario.

Results

The accuracy, number of parameters, and inference time of
the selected model evaluated using Tesla A100 GPU when
classifying ImageNet dataset were shown in ►Table 1. Grad-
CAM demonstrating the identified region of an OLP or a non-
OLP lesion is shown in ►Fig. 3. The red area indicates the
more important features, whereas the blue color indicates

the opposite. The performances of the three CNNs for OLP
and non-OLP diagnoses on the test dataset after training
using the same training parameters are summarized
in ►Table 2 and ►Table 3.

►Table 2 shows the prediction results in the confusion
matrix and►Table 3 presents the overall accuracy, PPV, NPV,
sensitivity, specificity, and F1-score derived from ►Table 2.

In ►Table 2, the bold font denotes the number of photo-
graphs that each model correctly diagnosed. The table 2
shows that most of the OLP and non-OLP photographs were
correctly diagnosed. The Xception and ResNet152V2 models
performed well on both OLP and non-OLP photographs.
However, the EfficientNetB3 model worked best on OLP
photographs only. The potential causes of misclassification
will be discussed later. The misclassification photographs of
OLP and non-OLP were shown in ►Fig. 4. Non-OLP misclas-
sification cases for Xception model are three cases of trau-
matic ulcer, two cases of epithelial dysplasia, and one case of
carcinoma in situ, recurrent aphthous ulcer, lupus erythe-
matosus, and hyperkeratosis. Non-OLP misclassification
cases for ResNet152V2 model are three cases of traumatic
ulcer and one case of recurrent aphthous ulcer, while in
EfficientNetB3 are seven cases of erythematous candidiasis,
seven cases of traumatic ulcer, two cases of recurrent
aphthous ulcer, and one case of hyperkeratosis and lupus
erythematosus.

In ►Table 3, the bold font denotes the best performance
for a particular measurement included in the investigation.
From this table, it is evident that all the selected CNNmodels
were able to diagnose OLP and non-OLP lesions using photo-
graphs. The performance of the Xception model was signifi-
cantly higher than that of the othermodels in terms of overall
accuracy and F1-score of 88 and 89%, respectively. For
instance, the overall accuracy of the Xception model was

Fig. 3 Gradient-weighted class activation mapping visualization of convolutional neural network classification for oral lichen planus (OLP) and
non-OLP lesions (traumatic ulcer) from Xception, ResNet152V2, and EfficientNetB3 models.
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Table 2 Confusion matrix of each model in predicting OLP and non-OLP lesions using the photographs in the test dataset

Model Actual OLP Actual non-OLP

Xception Predicted OLP 51 (TP) 9 (FN)

Predicted non-OLP 4 (FP) 46 (TN)

ResNet152V2 Predicted OLP 42 (TP) 4 (FN)

Predicted non-OLP 13 (FP) 51 (TN)

EfficientNetB3 Predicted OLP 53 (TP) 18 (FN)

Predicted non-OLP 2 (FP) 37 (TN)

Abbreviations: FN, false negative; FP, false positive; OLP, oral lichen planus; TN, true negative; TP, true positive.

Table 3 Performance of each model in diagnosing OLP and non-OLP lesions using the photographs in the test dataset

Model Accuracy PPV NPV Sensitivity Specificity F1-score

Xception 88.18% 85.00% 92.00% 92.73% 83.64% 88.70%

ResNet152
V2

84.55% 91.30% 79.69% 76.36% 92.73% 83.17%

EfficientNetB3 81.82% 74.65% 94.87% 96.36% 67.27% 84.13%

Abbreviations: FN, false negative; FP, false positive; NPV, negative predictive value; OLP, oral lichen planus; PPV, positive predictive value; TN, true
negative; TP, true positive.

Fig. 4 Misclassification photographs for Xception (hyperkeratosis), ResNet152V2 (traumatic ulcer), and EfficientNetB3 models (lupus
erythematosus). OLP, oral lichen planus.
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up to 6% higher than that of the other models. Even though
the sensitivity and specificity scores of the Xception model
may be lower than those of the other models, the overall
model performance can still be considered satisfactory with
such a limited dataset.

Discussion

Clinical diagnosis by human experts was considered the gold
standard until the development of AI systems using CNN
showed superior results.24 AI techniques using CNN for
disease diagnosis (classification) have been studied in
many fields using radiography, clinical examination, or
histopathology.7–18 The application of CNN in diagnosing
skin lesions based on the clinical appearance and color has
been studied previously.25,26 Skin and oral mucosal lesions
share similar diagnostic principles. The difference in color,
such as white, red, white-red, brown-black, and yellow and
changes in texture, such as ulcerated and vesiculobullous are
the criteria for diagnosing oral lesions. The classic presenta-
tion of OLP is a white reticular lesion. Erosive, atrophic,
bullous, and plaque lesions are the only accepted subtypes
of OLP in the presence of reticular lesions elsewhere in the
oral mucosa.1 The application of CNN in OLP diagnosis has
not been published previously. The classification model
using CNN devised in this study is the first to use CNN
algorithms for the diagnosis of OLP from photographs. OLP
is considered an OPMDwith amalignant transformation rate
ranging from 0.5 to 2.28%.5,27,28 Therefore, early diagnosis of
OLP, which would lead to prompt treatment and prevention
of oral cancer, is very important. Topical steroids are the
treatment of choice for OLP. In recalcitrant severe lesions,
systemic steroids, immunosuppressive agents, and biological
agents arehelpful.2Delayed diagnosis of OLP results in a poor
quality of life because of the painful and extensive untreated
lesion.

The variety of clinical manifestations of OLP makes its
clinical diagnosis difficult for general practitioners who lack
experience in diagnosing soft tissue lesions. The differential
diagnoses of OLP include oral leukoplakia, hyperplastic
candidiasis, oral ulcers, and other autoimmune mucocuta-
neous disorders, such as pemphigus vulgaris, oral pemphi-
goid, and lupus erythematosus. A definitive diagnosis of OLP
can bemade through histopathological diagnosis and immu-
nofluorescence studies. Autofluorescence and chemilumi-
nescence have been applied to increase the specificity and
sensitivity of diagnostic methods in identifying white, red,
and ulcerated lesions while diagnosing oral cancer or OPMD.
However, these techniques show varying results and are
subjective, depending on the experience with the device.29

The correct diagnosis of OLP is crucial because the treatment
varies for different lesions.

The development of telemedicine and teledentistry will
benefit from the CNN models. The application of the CNN
systemwith a smartphone may be helpful in teledentistry or
may be used to screen lesions before consultation or referral
to a specialist. Using both AI technology and CNN as diag-
nostic aids with careful clinical examination and history

taking may be used as a diagnostic tool for disease diagnosis
in the future.

In this study, we developed a newdataset that can be used
to train and develop ML models for diagnosing OLP and non-
OLP lesions using clinical photographs. The demonstration
shows that CNNmodels can achieve an accuracy of 82 to 88%
on a very small dataset, which is consistent with several
previous studies that demonstrated the superiority of image
augmentation for small datasets.16,30 Among the three mod-
els, the Xception model performed the best in terms of both
accuracy and F1-score. The Xception model was designed in
2017 to provide higher accuracy than previous CNNs, includ-
ing ResNet152V2, in the ImageNet data classification task.
The modification was motivated by the inception module in
Inception-v3, which uses a modified depthwise separable
convolutional layer (i.e., pointwise convolution followed by
depthwise convolution). Therefore, it is understandable that
the Xception model may achieve a better accuracy than
ResNet152V2 in other classification tasks.

Subsequently, EfficientNetB3 was designed in 2019 to
outperform the other CNNs in the ImageNet data classifica-
tion task. It provides even higher accuracy than the Xception
model in the ImageNet data classification task (see►Table 1).
However, in our study, it was interesting to note that
EfficientNetB3 performed the worst in OLP and non-OLP
diagnosis. This could be because EfficientNetB3 was created
by performing a neural architecture search using the AutoML
MNAS framework (i.e., automatic CNN model design frame-
work).31 The AutoML framework includes a process that uses
the classification accuracyof the provided dataset to improve
the structure of the model occasionally. Because the original
target of the EfficientNetB3 model was to classify ImageNet
data, the model was specially designed for the ImageNet
dataset. Therefore, EfficientNetB3may not be suitable for use
with a classification task that is completely different from the
ImageNet dataset.

The sensitivity for the detection of OLP from this model is
comparable with that of other studies involving dental caries
(81.90%).8 The application results of CNN for the diagnosis of
odontogenic cysts using panoramic and cone beam comput-
ed tomography or cyst and tumor models are also compara-
ble with those of our study.17,32 However, our result may be
lower when compared with CNN-assisted oral cancer diag-
nosis because oral cancer is clinically easier to diagnose than
OLP.13,33,34 The incidence of oral cancer is higher than that of
OLP; therefore, the data acquired for analysis aremuch easier
to obtain. Most non-OLP misclassification are traumatic
ulcer, recurrent aphthous ulcer and erythematous candidia-
sis. This is quite interesting because these groups of lesions
are easier to diagnose than other lesions including in the
differential diagnoses list for OLP such as epithelial dysplasia,
pemphigus vulgaris, mucous membrane pemphigoid which
AI performs well. This result emphasizes that AI may be
helpful in differential diagnose of these difficult lesions for
general practitioner

This study has some limitations. First, we included limited
data in this study. Collectingmore data frommultiple centers
would improve the sensitivity and F1-score of the models.
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Another limitation is that we have not used deep neural
network to distinguish OLP lesions from oral lichenoid drug
reactions, oral lichenoid contact lesions, or oral lichenoid of
graft-versus-host diseases, because of their marked similar-
ity in not only the clinical appearances but also the histo-
pathologic features and characteristics upon fluorescence
examination.35 Clinical history taking is important for the
diagnosis of these OLP subgroups. If more cases of different
OLP subtypes can be accumulated, it would be interesting to
determine whether CNN can classify these lesions.

In summary, the use of CNN to differentiate between OLP
and non-OLP lesions yields favorable results. This result can
be applied and expanded to the diagnosis of other oral
lesions, such as white lesions, oral ulcers, or immune-in-
duced oral lesions. These benefits can be applied to tele-
dentistry, or the model may be transferred to a smart mobile
application for easy use.
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