

Tinatin Natroshvili, MD^{1,2,3} Milly S. van de Warenburg, BSc^{1,2} Erwin P. Heine, MD¹ Kicholas J. Slater, MD, PhD^{1,2} Erik T. Walbeehm, MD, PhD² Ronald H. M. A. Bartels, MD, PhD⁴

¹ Department of Plastic and Reconstructive Surgery, CWZ, Nijmegen, The Netherlands

²Department of Plastic and Reconstructive Surgery, Radboud

University Medical Center, Nijmegen, The Netherlands

⁴Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands

Arch Plast Surg 2023;50:70–81.

Address for correspondence Tinatin Natroshvili, MD, Department of Plastic Surgery, Canisius Wilhelmina Ziekenhuis, Burgemeester Daleslaan 27, 6532 CL, Nijmegen, The Netherlands (e-mail: tina_natroshvili@hotmail.com).

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Abstract	 Background The clinical results of conservative treatment options for ulnar compression at the elbow have not been clearly determined. The aim of this review was to evaluate available conservative treatment options and their effectiveness for ulnar nerve compression at the elbow. Methods In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations, a systematic review and meta-analysis of studies was performed. Literature search was performed using Ovid MEDLINE, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL). Results Of the 1,079 retrieved studies, 20 were eligible for analysis and included 687
 Keywords ulnar nerve compression syndromes nerve compression syndromes conservative treatment 	cases of ulnar neuropathy at the elbow. Improvement of symptoms was reported in 54% of the cases receiving a steroid/lidocaine injection (95% confidence interval [CI], 41–67) and in 89% of the cases using a splint device (95% CI, 69–99). Conclusions Conservative management seems to be effective. Both lidocaine/steroid injections and splint devices gave a statistically significant improvement of symptoms and are suitable options for patients who refuse an operative procedure or need a bridge to their surgery. Splinting is preferred over injections, as it shows a higher rate of improvement.

Introduction

Ulnar nerve compression at the elbow is the second most prevalent entrapment neuropathy of the upper limb. The ulnar nerve travels down the medial side of the elbow,

received January 27, 2022 accepted after revision May 26, 2022 DOI https://doi.org/ 10.1055/s-0042-1757571. eISSN 2234-6171. through the cubital tunnel, which is the most common location for entrapment of the ulnar nerve.¹ Repeated flexion of the elbow, muscle malformation, or direct compression can be the source of ulnar nerve compression at the elbow.² If remained untreated, the ulnar nerve compression at the

© 2023. The Korean Society of Plastic and Reconstructive Surgeons. All rights reserved. This is an open access article published by Thieme under the terms of the

Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/ licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc., 333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

³ Department of Plastic and Reconstructive Surgery, Martini Hospital, Groningen, The Netherlands

elbow can lead to chronic loss of sensibility and muscle weakness.³

Most patients with ulnar nerve compression at the elbow undergo an operative procedure. However, conservative treatments, including splint devices, corticosteroid injections, physical therapy, and nerve gliding movements, have been described.¹ In cases where the risk of operation is high due to patient comorbidities or when patients have to wait a long time before undergoing a procedure, conservative treatment may be a good treatment option or bridge to surgery. The purpose of this article is to evaluate available conservative treatment options for ulnar nerve compression at the elbow and to review their outcomes.

Methods

This review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations.⁴

Search Methods for the Identification of Studies

The search strategy was conducted in collaboration with an independent librarian in the databases MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials (CEN-TRAL). The final search was performed in May 2020. In **-Table 1**, the detailed search methods are displayed. The columns visualize databases that have been used (MED-LINE, Embase, CENTRAL) and the rows are searches with number of hits, stated as results, and the combination of searches. There was no restriction in publication years. Two authors reviewed titles and abstracts of the identified studies, and after selection of relevant studies, the full-text articles were analyzed. Disagreements were resolved by a third reviewer. Cross-referencing took place to identify any additional studies missed in the search.

Selection Criteria

All randomized controlled trials, prospective or retrospective cohort study, case-control studies, or case series were eligible for inclusion. Studies were selected if they matched the following inclusion criteria: study groups consisted of a minimum of 5 patients, with a minimal age of 18 years, and patients had received a conservative (nonsurgical) treatment for symptoms of ulnar nerve compression at the elbow. All types of conservative treatment were included. Only studies with clearly described outcomes were selected, with at least a distinction between improvement and no improvement.

Exclusion criteria were studies performing animal experiments, cadaver studies, single case reports, or reviews. In **- Fig. 1**, the selection process is shown. **- Table 2** provides a summary of the characteristics of the included studies.

Quality Assessment

The quality of the included case-control studies was assessed using the "JBI Critical Appraisal Checklist for case-control studies" and the "JBI Critical Appraisal checklist for case series."⁵ These checklists pay attention to selection of the study groups, evaluation of the exposure, and statistical

analysis. In the checklist for case–control studies, the comparability of the groups and confounding factors are evaluated. Quality assessment is performed using a score ranging from 0 to 10 points. Studies with a score of 7 to 10 points were considered as high quality, 4 to 6 points as moderate quality, and 0 to 3 as low quality. Two reviewers conducted the quality appraisal. Any disagreements during the process were discussed and resolved by adjudication by a third reviewer.

Data Extraction

Data were independently extracted by two reviewers. The following data were extracted from the studies: total number of patients, gender, affected arm (dominant/nondominant), duration of symptoms until the start of treatment, type of conservative treatment, total duration of treatment, subjective and objective outcome measurements for pain, sensory or motor function improvement after the conservative treatment, advantages and disadvantages described by the authors, complications, and other features. In cases of different interpretations, the results were discussed again by the two reviewers and resolved by involvement of a third reviewer.

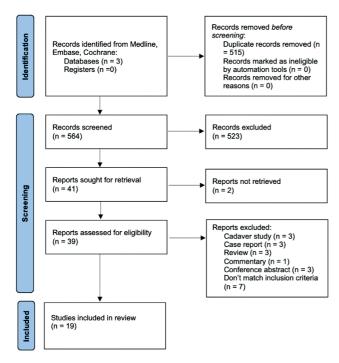
Statistical Analysis

The I² statistic was determined to measure study heterogeneity. The cutoff value for low, moderate, and high heterogeneity is set at 25, 50, and 75%, respectively.⁶ When possible and appropriate, a random-effects model was used to pool proportions of individual studies in the subgroups. This was done for the subgroup injections and splint devices, with the exception of studies reporting no individual response rates. Because I² was moderate to high in both subgroups, randomeffects models were used for further analyses. Results are presented as mean values or 95% confidence intervals. A pvalue of \leq 0.05 was considered statistically significant. Forest and funnel plots for both subgroup analyses were created for optimal visualization of the results. No additional analyses were done. Statistical analyses were performed using Med-Calc for Windows, version 19.3.1 (MedCalc Software, Ostend, Belgium).

Results

Initially, 1,079 studies were identified. A total of 515 duplicates were removed, and the remaining 564 titles and abstracts were screened for suitability. Forty-one studies were selected and the full texts were read. Nineteen papers were included in the final analysis. Screening the reference lists did not provide inclusion of additional studies. The selection process flow diagram with reasons for exclusion is shown in **-Fig. 1**. Of the included studies, 12 were level IV evidence,^{8–19} whereas 7 were level III^{20–26} (**-Table 2**). Methodological quality varied among the studies: 16 studies were considered as high quality and 3 studies as moderate quality. Also, 63% (n = 12) of the studies explicitly stated no funding. One study reported funding, but declared this had no role in collection, analysis,

Table 1 Detailed search methods


	Ovid MEDLINE In-Process nonindexed citations, Ovid Daily, Ovid MEDLINE, and MEDLINE 1946 to present	d MEDLINE Ovid OLD-	Embase 1974 to pres	sent	CENTRAL	
Search #	Search	Results	Search	Results	Search	Results
1	Ulnar Nerve.ti,ab,kf.	6,584	Ulnar Nerve.ti,ab, kw.	7,974	Ulnar nerve	1,209
2	Exp Ulnar Nerve Com- pression Syndromes/	1,053	Cubital tunnel syndrome/	2,583		
3	Exp Nerve Compression Syndromes/	21,972	Exp Nerve Com- pression Syndromes/	13,300		
4	Cubital Tunnel Syn- drome*.ti,ab,kf.	735	Cubital Tunnel Syn- drome*.ti,ab,kw.	881	(cubital tunnel syndrome*)	73
5	(Ulnar ADJ5 nerve ADJ5 compress*).ti,ab,kf.	617	(Ulnar ADJ5 nerve ADJ5 compress*).ti, ab,kw.	691	Ulnar near/5 nerve near/5 compress*	22
6	(Ulnar ADJ3 neuropat*). ti,ab,kf. OR (ulnar ADJ3 nerve ADJ3 entrap*).ti, ab,kf	1,322	(Ulnar ADJ3 neuro- pat*.ti,ab,kw. OR ulnar ADJ3 nerve ADJ3 entrap*).ti,ab, kw.	1,714	Ulnar near/3 neuro- pat* OR ulnar near/ 3 nerve near/3 entrap*	45
7	Exp Ulnar Neuropathies/	1,681				
8	Exp Compression neuropathy/	8,555	Exp compression/OR neuropathy/	83,947		
9	Exp Elbow/OR elbow.ti, ab,kf.	33,242	Elbow/OR elbow.ti, ab,kw.	43,519	Elbow	4,174
10	9 AND (1 OR 2 OR 3 OR 5 OR 6 OR 7 OR 8)	2,731	9 AND (1 OR 3 OR 5 OR 6 OR 8)	3,653	9 AND (1 OR 5 OR 6)	139
11	4 OR 10	3,135	2 OR 4 OR 10	5,290	4 OR 10	184
12	Exp Conservative Treatment/	2,826	Conservative treatment/	79,796	Conservative next treatment	4,883
13	Exp Splints/	8,696	Exp arm splint/	67		
14	Splint*.ti,ab,kf.	14,464	Splint*.ti,ab,kw.	15,653	Splint*	2,313
15	Surgical casts/	8,688				
16	Cast*.ti,ab,kf.	102,756	Cast*.ti,ab,kw.	120,699	Cast*	15,992
17	Nonoperative.ti,ab,kf. OR non-operative.ti,ab, kf.	15,164	(Nonoperative OR non-operative).ti, ab,kw.	18,895	Nonoperative OR non-operative	1692
18	Nonsurgical.ti,ab,kf. OR non-surgical.ti,ab,kf.	26,613	(Nonsurgical OR non-surgical).ti,ab, kw.	34,956	Non-surgical OR nonsurgical	3,561
19	Brace*.ti,ab,kf.	7,284	Brace [*] .ti,ab,kw.	9,295	Brace*	1,829
20	Avoiding pressure.ti,ab, kf. OR activity modifica- tion.ti,ab,kf.	634	(Avoiding pressure OR activity modifi- cation).ti,ab,kw.	762	Avoiding next pres- sure OR activity next modulation	124
21	Immobilization.ti,ab,kf. OR immobilisation.ti,ab, kf.	51,032	(Immobilization OR immobilization).ti, ab,kw.	57,722	Immobilization OR immobilisation	2891
22	Orthoses.ti,ab,kf OR Or- thotic Device*.ti,ab,kf.	3,551	(Orthoses OR Or- thotic Device*).ti, ab,kw.	4,737	Orthoses OR Or- thotic next Device*	1,276
23	Nerve tap*.ti,ab,kf.	2	Nerve tap*.ti,ab,kw.	2	Nerve tap*	694

	Ovid MEDLINE In-Process nonindexed citations, Ovid Daily, Ovid MEDLINE, and MEDLINE 1946 to present	d MEDLINE Ovid OLD-	Embase 1974 to pres	ent	CENTRAL	
Search #	Search	Results	Search	Results	Search	Results
24	Nerve gliding*.ti,ab,kf.	60	Nerve gliding*.ti, ab,kw.	68	Nerve gliding*	63
25	Segmental joint manipu- lation*.ti,ab,kf.	1	Segmental joint manipulation*.ti, ab,kw.	1	Segmental joint manipulation*	57
26	Exercise*.ti,ab,kf.	292,975	Exercise*.ti,ab,kw.	393,355	Exercise*	96,994
27	Sliding technique*.ti,ab, kf.	69	Sliding technique*. ti,ab,kw.	107	Sliding next technique	19
28	Neurodynamic mobi- lization* OR neurody- namic mobilization*.ti, ab,kf.	25	(Neurodynamic mobilization* OR neurodynamic mobilization*).ti, ab,kw.	29	Neurodynamic next mobilization OR neurodynamic mobilisation	85
29	Corticosteroid*.ti,ab,kf.	102,425	Corticosteroid*.ti, ab,kw.	153,079	Corticosteroid*	20,704
30	12 OR 13 OR 14 OR 15 OR 16 OR 17 OR 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26 OR 27 OR 28 OR 29	510,884	Exp external splint/	377	12 OR 14 OR 16 OR 17 OR 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26 OR 27 OR 28 OR 29	126,293
31			Exp arm brace/	132		
32			12 OR 13 OR 14 OR 15 OR 16 OR 17 OR 18 OR 19 OR 20 OR 21 OR 22 OR 23 OR 24 OR 25 OR 26 OR 27 OR 28 OR 29 OR 30 OR 31	708,965		
33	11 AND 29	279	11 AND 29	616	11 AND 29	184

Table 1 (Continued)

and interpretation of data and in writing of the manuscript.²⁶ A total of 682 patients, including 684 arms, were followed-up after receiving a treatment for ulnar nerve compression at the elbow. One study included a patient group receiving surgical management, without stating the exact number of patients involved.²⁵ In studies describing the following parameters, patients had a mean age of 48.7 years, the dominant side was involved in 64% of patients (198 of 313), and the minimal follow-up period was an average of 6.2 months (range: 1-124 months). Six studies included patients with mild-to-moderate symptoms, ^{10,12,15,17,20,24} while 13 studies included patients with any severity of symptoms.^{8,9,11,13,14,16,18,19,21–23,25,26} The most common interventions, from most to least common, included education and activity modification, steroid/lidocaine injection, splinting, physical therapy, pulsed ultrasound (US), or laser therapy. The most commonly reported outcomes included subjective clinical and patientreported outcomes, such as patient-reported VAS scores, symptoms, questionnaires, and clinical signs, followed by nerve conduction studies and US examination. Two studies

only reported subjective outcomes,^{10,15} while 17 studies reported on a combination of subjective and objective outcome measurements.^{8,9,11–14,16–26} Subgroup meta-analyses were performed on the injection and the splint devices studies. Oskay et al reported that 100% of patients (n = 7) had improvement of symptoms after physical therapy with an average follow-up period of 12 months, specifically after neurodynamic mobilization therapy in combination with US therapy.¹³ Ozkan et al stated that 69% of the patients (n=32) had improvement of symptoms 3 months after starting US or low-level laser therapy (LLLT).²² The duration of symptoms was between 5 weeks and 6 months at the start of these physical therapies. Nakamichi et al stated that 59% of arms (n = 80) had improvement of symptoms 3 months after education about the pathophysiology and activity modification.¹⁸ Beekman et al and Omejec et al reported that, respectively, 35 and 82% of the arms (n = 46 and 67) had improvement of symptoms after an average period of 22,8 months after starting to avoid risky positioning of the affected limb, and Padua et al described that 40% of the arms (n = 30) had improvement of

Fig. 1 The selection process following the PRISMA 2020 recommendations.

their symptoms after 6 to 19 months of only giving information about what ulnar nerve entrapment at the elbow is and how to avoid risky positioning.^{19,25,26} Beekman et al reported an average duration of symptoms of 3.5 months before the start of activity modification.²⁵ Omejec et al and Padua et al did not mention the duration of symptoms.^{19,26} Study data are presented in **~ Table 3**.

Physical Therapy, Ultrasound, and Laser Therapy

Neurodynamic mobilization in combination with US therapy was reported to be a beneficial therapy for all patients. Oskay et al stated that these therapies are viable options for the treatment of ulnar neuropathy at the elbow.¹³ Ozkan et al saw significant improvement in patients after treating them with either US or LLLT.²² More severely affected patients were pooled in the US group, so they reason that this therapy might be superior to LLLT.

Meta-analysis

Injections

In our meta-analysis of the outcomes of conservative therapy for ulnar nerve compression at the elbow, a statistically significant proportion of patients improved after a steroid/lidocaine injection.

Pooled results of six studies in the injections subgroup showed that 54% of the patients (95% confidence interval [CI], 41–67) improved after an average period of 4.3 months after receiving a steroid/lidocaine injection for ulnar nerve compression at the elbow. The duration of symptoms before injection was 2 to 36 months. The I^2 was 59% (95% CI, 0–83). Forest and funnel plot are shown in **– Fig. 2**, and detailed calculations are shown in **– Table 4**.

Splinting

Pooled results of five studies in the splint devices subgroup showed that 89% of the patients (95% CI, 69–99) improved using a splint device for ulnar nerve compression at the elbow for an average period of 18.7 months.¹⁴ I² was 92% (95% CI, 84–96). Forest and funnel plot are shown in **– Fig. 3**, and detailed calculations are shown in **– Table 4**. The duration of symptoms before starting the usage of a splint was 0.5 to 72 months. All studies used an elbow brace that prevented elbow flexion. Dellon et al, Seror, Shah et al, and Svernlöv et al used a nighttime splint,^{14,16,17,24} while Hong et al and Michell and Sesath recommended to wear the splints as much as possible.^{15,23} The splints consisted of a variety of materials, including neoprene, polyform, and thermoplastic.^{14,23,24} Michell and Sesath designed the Cambridge Ulnar Splint, with a plastic exoskeleton, for their study.¹⁵

Discussion

In this systematic review, we evaluated available conservative treatment options for ulnar nerve compression at the elbow and reviewed the effectiveness and complications of the options. Of the 1,079 retrieved studies, 19 were eligible for analysis and included a total of 682 patients and 684 cases of ulnar neuropathy at the elbow. Improvement of symptoms was reported in 54% of the cases receiving a steroid/lidocaine injection (95% CI, 41–67). Improvement of symptoms was reported in 89% of the cases using a splint device (95% CI, 69– 99).

The results of the subgroup meta-analyses show the proportions of patients with improvement of symptoms, but not how much they improved. The inability to determine the amount of the improvement is due to the wide variety of outcome measures used in the included studies (e.g., subjective clinical and patient-reported outcomes, nerve conduction studies, and US examination).

All the studies included in this systematic review described improvement in symptoms after education, information about avoiding risky positioning of the elbow, or both. Nakamichi et al described this treatment to be effective, inexpensive, and simple, with no contraindications. It can be started immediately after diagnosis.¹⁸ Since there were no control groups in any of these studies, where patients received no information at all, improvement due to the natural course of ulnar neuropathy at the elbow cannot be ruled out.

In our meta-analysis, a statistically significant proportion of patients using a splint device for ulnar nerve compression at the elbow improved. Michell and Sesath presented it to be a comfortable, effective, and cost-effective treatment option.¹⁵ Seror and Svernlöv et al report that even patients with severe and long-lasting symptoms benefited from wearing a splint.^{16,24} Hong et al compared wearing a splint with an additional steroid injection and detected no supplementary effect of the injection.²³ This brings us to a curious point where it is the question if the placebo effect or natural course of ulnar nerve compression at the elbow might not be inadequate.

	Authors and year	Title	Journal	Country	Type of study	Number of patients receiving conser- vative treatment	Level of evidence	Funding or conflict of interest	Methodological quality assessment
Injections:	ions:								
-	Alblas et al, 2012 ⁸	Injection with corti- costeroids (ultra- sound guided) in patients with an ul- nar neuropathy at the elbow, feasibili- ty study	European Journal of Neurology	The Netherlands	Case series, prospective	∞	2	WN	High
2	Chen et al, 2020 ²⁰	Perineural dextrose and corticosteroid injections for ulnar neuropathy at the elbow: a random- ized double-blind trial	Archives of Physical Medicine & Rehabilitation	China	Case-control, prospective	33	=	ON	High
с С	Choi et al, 2015 ⁹	Clinical implications of real-time visual- ized ultrasound- guided injection for the treatment of ul- nar neuropathy at the elbow: a pilot study	Annals of Rehabili- tation Medicine	Korea	Caser series, prospective	10	≥	NO	High
4	Gronbeck et al, 2021 ¹⁰	Ultrasound-guided cubital tunnel injec- tion: a review and exploration of utility as a diagnostic aid in mild or nonclassic cubital tunnel patients	Techniques in Orthopaedics	United States	Case series, retrospective	63	2	WN	High
ى 1	Pechan and Kredba, 1980 ¹¹	Treatment of cubital tunnel syndrome by means of local ad- ministration of cor- tisonoids. II. Long- term follow-up	Acta Universitatis Carolinae, Medical	Czech Republic	Case series, prospective	14	2	WN	Moderate
9	Rampen et al, 2011 ¹²	Ultrasound-guided steroid injection to treat mild ulnar neuropathy at the elbow	Muscle & Nerve	The Netherlands	Case series, prospective	7	2	WN	High (Continued)

Archives of Plastic Surgery Vol. 50 No. 1/2023 © 2023. The Korean Society of Plastic and Reconstructive Surgeons. All rights reserved.

Table 2 Summary of characteristics of studies included

vanVaen at		Corticostaroid iniac	Muscla 8. Narva	The Matherlands	(aca_control	30	=	NIM	Hich
vanveen et al, 2015 ²¹		concrosteroid injec- tion in patients with ulnar neuropathy at the elbow: a ran- domized, double- blind, placebo-con- trolled trial	Muscie & Nerve	une veureriands	prospective	0	=	NW	ubu
Physical therapy:									
Oskay et al, 2010 ¹³) ¹³	Neurodynamic mo- bilization in the conservative treat- ment of cubital tun- nel syndrome: long- term follow-up of 7 cases	Journal of Manipu- lative & Physiologi- cal Therapeutics	Turkey	Case series, prospective	7	N	No	Moderate
Ozkan et al, 2015 ²²	5 ²²	New treatment alternatives in the ulnar neuropathy at the elbow: ultra- sound and low-level laser therapy	Acta Neurologica Belgica	Turkey	Case-control, prospective	32	=	No	High
Splint devices:									
Dellon et al, 1993 ¹⁴)3 ¹⁴	Nonoperative man- agement of cubital tunnel syndrome: an 8-year prospective study	Neurology	United States	Case series, prospective	121	2	WN	High
Hong et al, 1996 ²³	6 ²³	Splinting and local steroid injection for the treatment of ul- nar neuropathy at the elbow: clinical and electrophysio- logical evaluation	Archives of Physical Medicine & Rehabilitation	United States	Case-control, prospective	10	=	No	High
Michell and Sesath, 2020 ¹⁵	ath,	Feasibility trial of treatment of ulnar neuropathy at the elbow using a spe- cifically designed splint	JCR: Journal of Clin- ical Rheumatology	United Kingdom	Case series, prospective	15	2	MM	Moderate

Table 2 (Continued)

High	High	High		High	High	High	High
MZ	Ъ Z	WN		WN	No	Yes	ΣZ
≥	2	≡		Ξ	2	E	2
22	19	51		AA	77	67	30
Case series, prospective	Case series, prospective	Case–control, prospective		Case- control, prospective	Case series, prospective	Case- control, prospective	Case series, retrospective
France	United States	Sweden		Netherlands	Japan	Slovenia	ltaly
Journal of Bone & Joint Surgery	Journal of Hand Surgery	Journal of Hand Surgery		Neurology	Archives of Physical Medicine & Rehabilitation	Clinical Neurophysiology	Clinical Neurophysiology
Treatment of ulnar nerve palsy at the elbow with a night splint	Outcomes of rigid night splinting and activity modifica- tion in the treat- ment of cubital tunnel syndrome	Conservative treat- ment of the cubital tunnel syndrome		Ulnar neuropathy at the elbow: follow-up and prognostic fac- tors determining outcome	Patient education for the treatment of ulnar neuropathy at the elbow	Long-term out- comes in patients with ulnar neuropa- thy at the elbow treated according to the presumed etiology	Natural history of ulnar entrapment at elbow
Seror, 1993 ¹⁶	Shah et al, 2013 ¹⁷	Svernlöv et al, 2009 ²⁴	ler:	Beekman et al, 2004 ²⁵	Nakamichi et al, 2009 ¹⁸	Omejec and Pod- nar, 2018 ²⁶	Padua et al, 2002 ¹⁹
13	14	15	Other:	16	17	18	19

Abbreviations: NA, no information available; NM, not mentioned.

in studies included in the systematic review
ncluded in
n studies i
Summary of data in s
Table 3 Sum

#	Authors and year	No. of patients in conservative group/no. of cases	Males (no. [%])/females (no. [%])	Mean age in years (range)	Severity of the included cases ^a	Mean FU in years (range)	No. of cases im- proved (%)/no. of patients not im- proved (%)
Injections	ns						
-	Alblas et al, 2012 ⁸	8/9	4 (50)/4 (50)	53 (43-67)	Л	0.25 (NA)	5 (56)/4 (44)
2	Chen et al, 2020 ²⁰	33/33	11 (33)/22 (67)	56 (32–77)	Mild-to-moderate	0.5 (NA)	17 (52)/16 (48)
m	Choi et al, 2015 ⁹	10/10	7 (70)/3 (30)	63 (57–58)	Л	0.1 (NA)	NA (significant drop in VAS)
4	Gronbeck et al, 2021 ¹⁰	NA/56	NA	47 (NA)	Mild	NA (0.1–0.25)	38 (68)/18 (32)
ъ	Pechan and Kredba, 1980 ¹¹	14/22	6 (43)/8 (57)	41 (25–65)	Mild	1.2 (0.5–NA)	14 (64)/8 (36)
9	Rampen et al, 2011 ¹²	7/7	6 (86)/1 (14)	43 (32–54)	Mild	0.13 (NA)	4 (57)/3 (43)
7	vanVeen et al, 2015 ²¹	30/30	18 (60)/12 (40)	56 (29–91)	Л	0.25 (NA)	9 (30)/21 (70)
Physica	Physical therapy:						
8	Oskay et al, 2010 ¹³	7/7	NA	NA (35–70)	Л	1.0 (NA)	7 (100)/0 (0)
6	Ozkan et al, 2015 ²²	32/32	16 (50)/16 (50)	44 (NA)	Л	0.25 (NA)	22 (69)/10 (31)
Splint (Splint devices:						
10	Dellon et al, 1993 ¹⁴	121/121	23 (19)/98 (81)	44 (15–72)	n	4.9 (1.0-10.3)	85 (70)/36 (30)
1	Hong et al, 1996 ²³	10/12	10 (100)/0 (0)	59 (37–70)	Þ	0.5 (NA)	NA (significant im- provement in symptoms)
12	Michell and Sesath, 2020 ¹⁵	15/15	4 (27)/11 (73)	41 (21–84)	Mild-to-moderate	0.15 (0.13-0.4)	11 (73)/4 (27)
13	Seror, 1993 ¹⁶	22/22	12 (55)/10 (45)	52 (39–81)	Л	0.9 (0.3–2.5)	22 (100)/0 (0)
14	Shah et al, 2013 ¹⁷	19/24	8 (42)/11 (58)	43 (21–72)	Mild-to-moderate	2.0 (1.3–2.7)	21 (88)/3 (12)
15	Svernlöv et al, 2009 ²⁴	51/51	24 (47)/27 (53)	43 (17–72)	Mild-to-moderate	0.5 (NA)	51 (100)/0 (0)
Other:							
16	Beekman et al, 2004 ²⁵	NA/46	NA	51 (39–60)	n	1.2 (6–NA)	16 (35)/30 (65)
17	Nakamichi et al, 2009 ¹⁸	77/80	56 (73)/21 (27)	52 (19–77)	Л	NA (3-NA)	59 (74)/21 (26)
18	Omejec and Podnar, 2018 ²⁶	67/67	33 (49)/34 (51)	47 (19–75)	N	2.4 (2.2–3.4)	55 (82)/12 (18)
19	Padua et al, 2002 ¹⁹	27/30	11 (41)/16 (59)	57 (32–76)	n	NA (0.5–1.6)	12 (40)/18 (60)

Archives of Plastic Surgery Vol. 50 No. 1/2023 © 2023. The Korean Society of Plastic and Reconstructive Surgeons. All rights reserved.

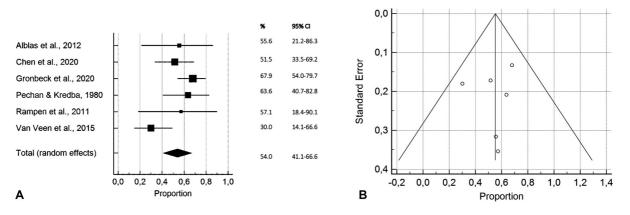


Fig. 2 Forest plot (A) and funnel plot (B) showing pooled results of overall symptomatic improvement in proportions of improved patients in the injections subgroup with 95% CIs per included study.

Author and year	Sample size (no. of cases)	Proportion (%)	95% CI	Weight (%) random effects
► Fig. 2: pooled results of ove	erall symptomatic improveme	ent in proportions	of improved patient	s in the injections subgroup
Alblas et al, 2012 ⁸	9	55,556	21,201-86,300	11.02
Chen et al, 2020 ²⁰	33	51,515	33,544–69,204	19.93
Gronbeck et al, 2021 ¹⁰	56	67,857	54,036-79,715	23.07
Pechan and Kredba, 1980 ¹¹	22	63,636	40,658-82,802	17.17
Rampen et al, 2011 ¹²	7	57,143	18,405–90,101	9.51
vanVeen et al, 2015 ²¹	30	30,000	14,735–49,396	19.30
Total (random effects)	157	54,009	41,135–66,617	100.00
► Fig. 3: pooled results of over	rall symptomatic improvemer	nt in proportions of	improved patients in	n the splint devices subgroup
Dellon et al, 1993 ¹⁴	121	70,248	61,262–78,215	21.77
Michell and Sesath, 2020 ¹⁵	15	73,333	44,900–92,213	18.30
Seror, 1993 ¹⁶	22	100,000	84,563-100,000	19.38
Shah et al, 2013 ¹⁷	24	87,500	67,639–97,344	19.59
Svernlöv et al, 2009 ²⁴	51	100,000	93,022-100,000	20.96
Total (random effects)	235	89,000	69,729–99,128	100

Table 4 Exact calculations and tests for heterogeneity corresponding with - Figs. 2 and 3

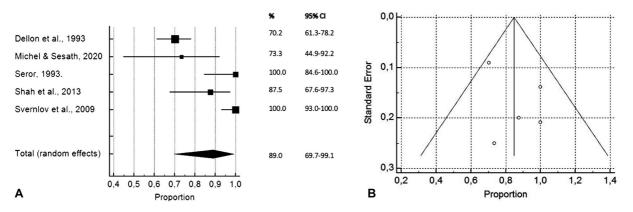


Fig. 3 Forest plot (A) and funnel plot (B) showing pooled results of overall symptomatic improvement in proportions of improved patients in the splint devices subgroup with 95% CIs per included study.

A major flaw of the study is the lack of preoperative clinical data. The severity of the clinical situation is not exactly known. Six studies only included patients with mild-to-moderate symptoms, while 13 studies included patients with any severity of symptoms. However, it is possible that patients with more severe symptoms were offered or opted for surgery earlier. Different patient populations are compared, and different treatment durations, follow-up periods, compliances, and outcome measures are reported in the included studies. Duration of symptoms in the included studies is not clearly stated, so no conclusion could be drawn on the natural course of ulnar neuropathy at the elbow.

It cannot be denied that bias might be introduced especially due to the lack of a proper control group and small samples. Dropouts in the included studies are likely to be patients who are experiencing no effect from conservative treatment options, so effectiveness of the investigated treatment could be overrated in some of the included studies. This might be overcome by developing a proper randomized clinical trial comparing some kind of conservative treatment with no treatment.

Conservative management for ulnar neuropathy at the elbow seems to improve symptoms in up to 9 out of 10 patients. Both lidocaine/steroid injections and splint devices gave a significant improvement in symptoms and are suitable options for patients who refuse an operative procedure or need a bridge to this treatment. Physical therapy also seems to be a promising option but needs to be investigated further in larger samples to draw any conclusions on the overall effectiveness. Also, the education and activity modification gave a positive effect on the symptoms and form a simple way to start any treatment for ulnar neuropathy at the elbow. In cases where surgical treatment is not applicable to patients due to comorbidities, it is tempting to advise education in combination with activity modification. This might be followed or combined with further splinting. However, the limitations of this study should be taken into consideration.

Note

The authors received no financial support for the research, authorship, and/or publication of this article.

Authors' Contributions

T.N.: conceptualization, data curation, formal analysis, investigation, methodology, writing – original draft, writing – review and editing.

M.S.v.d.W.: Conceptualization, data curation, formal analysis, investigation, methodology, writing – original draft, writing – review and editing.

E.P.H.: Conceptualization, methodology, writing – original draft, writing – review and editing.

N.J.S.: Data curation, formal analysis, investigation, methodology, writing – original draft.

E.T.W.: Conceptualization, project administration, supervision, writing – review and editing.

R.H.M.A.B.: Conceptualization, investigation, methodology, project administration, resources, supervision, writing – review and editing. Conflict of Interest None declared.

Acknowledgments

We thank Alice Tillema for her assistance with database searches.

References

- 1 Caliandro P, La Torre G, Padua R, Giannini F, Padua L. Treatment for ulnar neuropathy at the elbow. Cochrane Database Syst Rev 2016; 11:CD006839
- 2 Jacobson L, Dengler J, Moore AM. Nerve entrapments. Clin Plast Surg 2020;47(02):267–278
- 3 Boone S, Gelberman RH, Calfee RP. The management of cubital tunnel syndrome. J Hand Surg Am 2015;40(09):1897–1904, quiz 1904
- 4 Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372(71):n71
- 5 Moola S, Munn Z, Tufanaru C, et al., Systematic reviews of etiology and risk. In: Aromataris E, Munn Z, eds. Joanna Briggs Institute Reviewer's Manual. The Joanna Briggs Institute; 2017
- 6 Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327(7414):557–560
- 7 Ostend, Belgium: MedCalc Software Ltd; 2020
- 8 Alblas CL, van Kasteel V, Jellema K. Injection with corticosteroids (ultrasound guided) in patients with an ulnar neuropathy at the elbow, feasibility study. Eur J Neurol 2012;19(12):1582–1584
- 9 Choi CK, Lee HS, Kwon JY, Lee WJ. Clinical implications of realtime visualized ultrasound-guided injection for the treatment of ulnar neuropathy at the elbow: a pilot study. Ann Rehabil Med 2015;39(02):176–182
- 10 Gronbeck C, Wolf J, Rodner CM. Ultrasound-guided cubital tunnel injection: a review and exploration of utility as a diagnostic aid in mild or nonclassic cubital tunnel patients. Tech Orthop 2021;36 (03):301–306
- 11 Pechan J, Kredba J. Treatment of cubital tunnel syndrome by means of local administration of cortisonoids. II. Long-term follow-up. Acta Univ Carol [Med] (Praha) 1980;26(3–4):135–140
- 12 Rampen AJ, Wirtz PW, Tavy DL. Ultrasound-guided steroid injection to treat mild ulnar neuropathy at the elbow. Muscle Nerve 2011;44(01):128–130
- 13 Oskay D, Meriç A, Kirdi N, Firat T, Ayhan C, Leblebicioğlu G. Neurodynamic mobilization in the conservative treatment of cubital tunnel syndrome: long-term follow-up of 7 cases. J Manipulative Physiol Ther 2010;33(02):156–163
- 14 Dellon AL, Hament W, Gittelshon A. Nonoperative management of cubital tunnel syndrome: an 8-year prospective study. Neurology 1993;43(09):1673–1677
- 15 Michell AW, Sesath HGR. Feasibility trial of treatment of ulnar neuropathy at the elbow using a specifically designed splint. J Clin Rheumatol 2020;26(01):37–39
- 16 Seror P. Treatment of ulnar nerve palsy at the elbow with a night splint. J Bone Joint Surg Br 1993;75(02):322–327
- 17 Shah CM, Calfee RP, Gelberman RH, Goldfarb CA. Outcomes of rigid night splinting and activity modification in the treatment of cubital tunnel syndrome. J Hand Surg Am 2013;38(06):1125--1130.e1
- 18 Nakamichi K, Tachibana S, Ida M, Yamamoto S. Patient education for the treatment of ulnar neuropathy at the elbow. Arch Phys Med Rehabil 2009;90(11):1839–1845
- 19 Padua L, Aprile I, Caliandro P, Foschini M, Mazza S, Tonali P. Natural history of ulnar entrapment at elbow. Clin Neurophysiol 2002;113(12):1980–1984
- 20 Chen LC, Ho TY, Shen YP, et al. Perineural dextrose and corticosteroid injections for ulnar neuropathy at the elbow: a

randomized double-blind trial. Arch Phys Med Rehabil 2020;101 (08):1296–1303

- 21 vanVeen KE, Alblas KC, Alons IM, et al. Corticosteroid injection in patients with ulnar neuropathy at the elbow: a randomized, double-blind, placebo-controlled trial. Muscle Nerve 2015;52 (03):380–385
- 22 Ozkan FU, Saygi EK, Senol S, et al. New treatment alternatives in the ulnar neuropathy at the elbow: ultrasound and low-level laser therapy. Acta Neurol Belg 2015;115(03):355–360
- 23 Hong CZ, Long HA, Kanakamedala RV, Chang YM, Yates L. Splinting and local steroid injection for the treatment of ulnar neuropathy

at the elbow: clinical and electrophysiological evaluation. Arch Phys Med Rehabil 1996;77(06):573–577

- 24 Svernlöv B, Larsson M, Rehn K, Adolfsson L. Conservative treatment of the cubital tunnel syndrome. J Hand Surg Eur Vol 2009;34 (02):201–207
- 25 Beekman R, Wokke JH, Schoemaker MC, Lee ML, Visser LH. Ulnar neuropathy at the elbow: follow-up and prognostic factors determining outcome. Neurology 2004;63(09):1675–1680
- 26 Omejec G, Podnar S. Long-term outcomes in patients with ulnar neuropathy at the elbow treated according to the presumed aetiology. Clin Neurophysiol 2018;129(08):1763–1769