Consensus of the Brazilian Headache Society (SBCe) for prophylactic treatment of episodic migraine: part II

Consenso da Sociedade Brasileira de Cefaleia (SBCe) para o tratamento profilático da migrânea episódica: parte II

Paulo Sergio Faro Santos\(^1\) Eliana Meire Melhado\(^2,\) Alexandre Ottoni Kaup\(^3,4,5\) Elder Machado Sarmento\(^9\) Giselle Oliveira Martins Theotonio\(^10\) Henrique Carneiro de Campos\(^11\) Ida Fortini\(^12\) Jano Alves de Souza\(^13\) Jayme Antunes Maciel Júnior\(^14\) João Batista Alves Segundo\(^15\) João José Freitas de Carvalho\(^16,17\) José Geraldo Speziali\(^18\) Leandro Cortoni Caia\(^19\) Liselotte Menke Barea\(^20\) Luiz Paulo Queiroz\(^21\) Marcio Nattan Portes Souza\(^22\) Marcos Ravi Cerqueira Ferreira Figueiredo\(^23\) Maria Eduarda Nobre de Magalhães Costa\(^9,24\) Mário Fernando Prieto Peres\(^25\) Mauro Eduardo Jurno\(^26,27\) Patrícia Machado Peixoto\(^28\) Pedro André Kowacs\(^29,30\) Pedro Augusto Sampaio Rocha-Filho\(^31,32\) Pedro Ferreira Moreira Filho\(^33\) Raimundo Pereira Silva-Neto\(^34,35\) Yara Dadalti Fragoso\(^36\)

\(^1\) Instituto de Neurologia de Curitiba, Departamento de Neurologia, Setor de Cefaleia e Dor Orofacial, Curitiba PR, Brazil.
\(^2\) Centro Universitário Padre Albino, Faculdade de Medicina, Departamento de Neurologia, Catanduva SP, Brazil.
\(^3\) Houston Headache Clinic, Houston TX, USA.
\(^4\) Universidade Federal de São Paulo, São Paulo SP, Brazil.
\(^5\) Universidade de Santo Amaro, São Paulo SP, Brazil.
\(^6\) Hospital Santa Marcelina, São Paulo SP, Brazil.
\(^7\) Centro Médico de Neurologia, São Paulo SP, Brazil.
\(^8\) Universidade Federal do Paraná, Departamento de Ciência Médica, Disciplina de Neurologia, Curitiba PR, Brazil.
\(^9\) Universidade Federal Fluminense, Rio de Janeiro RJ, Brazil.
\(^10\) Universidade Federal do Rio de Janeiro, Centro de Pesquisas Rene Rachou, Editora UFRJ, Rio de Janeiro RJ, Brazil.
\(^11\) Clínica Neurológica, Belo Horizonte MG, Brazil.
\(^12\) Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil.
\(^13\) Universidade Federal Fluminense, Departamento de Medicina Clínica, Disciplina de Neurologia, Niterói RJ, Brazil.
\(^14\) Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brazil.
\(^15\) Centro Integrado de Saúde Lineu Araújo, Ambulatório de Neurologia, Teresina PI, Brazil.
\(^16\) Unicristo, Curso de Medicina, Disciplina de Neurologia, Fortaleza CE, Brazil.
\(^17\) Hospital Geral de Fortaleza, Serviço de Neurologia, Núcleo de Cefaleias, Fortaleza CE, Brazil.
\(^18\) Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Neurologia, Ribeirão Preto SP, Brazil.
\(^19\) Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo SP, Brazil.

Address for correspondence Eliana Meire Melhado (e-mail: elianamelhado@gmail.com).

© 2022. Academia Brasileira de Neurologia. All rights reserved.
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda., Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

Arq. Neuropsiquiatr. 2022;80(9):953–969.
INTRODUCTION

The Brazilian Headache Society (SBCe, in the Portuguese acronym) appointed a committee of authors with the objective of establishing a consensus with recommendations on the prophylactic treatment of episodic migraine based on worldwide publications, as well as on personal experience. The detailed research methodology and involvement of the authors, along with an analysis of the therapeutic classes of beta-blockers,
anticonvulsants, tricyclic antidepressants, and monoclonal anti-
CGRP antibodies are described in the first part of the present
document.

Methods
The SBCe, through the current board, appointed an ad hoc
committee with the purpose of creating the present Consen-
sus on prophylactic treatment of episodic migraine (EM) and
developing recommendations for the management of these
patients in order to disseminate knowledge in the field of
headache and assist medical professionals in their routine.

Twelve working groups were created, each dedicated to
one or more classes of EM prophylactics.

The members were chosen by the Board of Directors of the
SBCs according to the following criteria:
- Proactivity
- Ethics
- Practice with article writing
- Publication in journals and presented works
- Recognition

The coordinator of each group was chosen for their
expertise in headache, curriculum, and practice in working
with groups.

The participants in each group reviewed and discussed
online the relevant topics, on which they wrote the initial
text. These texts were reviewed by another group and
returned to the original groups for corrections. The corrected
texts were reviewed and standardized by the coordinators of
the groups. At the last virtual meeting, all authors assessed
and approved the final text of the Consensus.

The search for articles was carried out in the PubMed
database, covering the period from the earliest articles
recorded until articles published in 2020. The included studies
ranged from case reports, case series, nonrandomized and/or
non-controlled clinical trials and randomized and controlled
clinical trials to systematic reviews and meta-analyses.

**ANGIOTENSIN-CONVERTING ENZYME
INHIBITORS AND ANGIOTENSIN RECEPTOR
BLOCKERS**

General aspects
Actions mediated by the renin–angiotensin system (RAS) are
recognized in extrarenal sites such as the lungs, blood vessels,
and central and peripheral nervous systems. The presence of
angiotensin 1 (AT1) and angiotensin 2 (AT2) receptors in
regions like the anterior and prefrontal cingulate cortex, the
thalamus, the periaqueductal gray matter, the tonsils, and the
medulla emphasizes the idea that this system plays an impor-
tant role in regulating inflammation and oxidative stress,
which may be related to the pathophysiology of migraine.1,2

A possible genetic association between RAS and migraine
has been considered. Studies on angiotensin-converting
enzyme (ACE) polymorphism in migraine patients have
suggested that there is a higher prevalence and frequency of
attacks of migraine without aura in people with the DD-
ACE gene (homozygous for deletion).3

In addition, RAS interacts with neurotransmitters and
endorphins acting on sympathetic modulation and synthesis
of prostacyclin, bradykinin, encephalin, and substance P,
both centrally and peripherally, thus suggesting that sub-
stances that modulate this system may be relevant for the
treatment of migraine.4

Lisinopril

Studies
A double-blind, randomized, crossover study comparing
lisinopril with placebo in a population of 47 patients showed
that this drug was superior to placebo regarding reducing the
numbers of hours and days with headache, days with mi-
graine, and the pain severity index, which were all ~ 20% lower after 12 weeks of follow-up.5

Enalapril

Studies
A single randomized double-blind study6 compared the use
of enalapril with placebo for 2 months in 40 patients with
episodic migraine. After a period of 1 month without pro-
phylactic medication, the patients were randomized to
receive enalapril 5 mg or placebo for 2 months. The group
that used enalapril showed significant a reduction in dura-
tion, severity, and frequency of headache attacks per month,
as measured on a visual analogue scale (VAS; from 1 to 10)
when compared with the placebo group.

Captopril

Studies
Captopril has been evaluated in a single double-blind, ran-
donized Class III study with 26 patients. Due to the small
number of patients and to the high dropout rate from the
study (23%) due to side effects and inefficacy, it was con-
cluded that the data are insufficient to determine that
captopril is not useful for the prophylaxis of migraine.7

Candesartan

Studies
A study by Tronvik et al. evaluated the efficacy of candesartan
16 mg as a preventative drug for migraine in 60 adult
patients.8 This was a double-blind, randomized, placebo-
controlled study with patients who had two to six migraine
attacks per month. In the 1st month, the entire sample
received only placebo, and then 30 patients were random-
ized to receive 16 mg of candesartan for 12 weeks and,
subsequently, placebo for another 12 weeks. The other 30
patients were randomized to do the opposite (receiving
placebo for 12 weeks and then receiving candesartan
16 mg for another 12 weeks).

Candesartan was superior to placebo when considering
the mean number of days with headache in the 12-week
period of treatment as the main outcome. Analysis according
to intention to treat showed that during the 12 weeks of
treatment, the patients had an average of 13.6 ± 10.7 days with headache versus 18.5 ± 12.5 days during the 12 weeks of placebo ($p = 0.001$). There was no difference in adverse events between the two treatment groups. In conclusion, candesartan 16 mg was superior to placebo in this 12-week crossover study, both in the primary and in all secondary outcomes, except regarding lost working days and the Health-Related Questionnaire SF-36, regarding quality of life.

In 2014, Stovner et al. conducted a triple-blind study comparing candesartan cilexetil 16 mg, slow-release propranolol 160 mg, and placebo. This was a placebo-controlled study, with a double crossover between groups, evaluating 72 adult subjects with episodic or chronic migraine. All patients received the 3 possible treatments for 12 weeks each. The primary outcome was the number of days with migraine for 4 weeks. In a modified intention-to-treat analysis, candesartan 16 mg was superior to placebo (2.95 versus 3.53 days) and was not worse than slow-release propranolol 160 mg (2.91 days). Regarding escitalopram, there is only one Class III study, which compared it with venlafaxine. In the escitalopram group, frequency, duration, and intensity decreased significantly in the same proportions as with venlafaxine, but with a better safety profile for escitalopram.

Telmisartan

Studies

A randomized, double-blind, placebo-controlled study in parallel groups to study the effect of telmisartan 80 mg on migraine prevention showed that it was not superior to placebo. After 12 weeks, there was no statistically significant reduction in the number of days with migraine (telmisartan group $80 \, mg = 1.65 \pm 3.46$ days and placebo group $= 1.14 \pm 3.78$ days; $p = 0.739$). The side effects observed were similar in the two groups.

Conclusion

Among angiotensin-converting enzyme inhibitors (ACEIs) and Angiotensin Receptor Blockers (ARBs), there is a consensus that candesartan is a good option for the preventive treatment of EM (grade A recommendation). Despite weak evidence of efficacy, lisinopril and enalapril can be used for the prophylaxis of EM, primarily as adjuvant therapy in patients with associated arterial hypertension (grade C recommendation for both). Captopril and telmisartan are not recommended for migraine prophylaxis (recommendation grades U and B, respectively).

SELECTIVE SEROTONIN REUPTAKE INHIBITORS

General aspects

Selective serotonin reuptake inhibitors (SSRIs) are drugs that increase the intrasynaptic serotonin levels through potent selective inhibition of serotonin reuptake, with minimal effect on the reuptake of norepinephrine and dopamine.

Citalopram/Escitalopram

Studies

For citalopram, two Class II studies with negative evidence have been conducted.

Fluoxetine

Studies

Four double-blind, parallel controlled clinical trials and subsequent reviews suggested that fluoxetine was efficacious for the prophylaxis of migraine attacks.

Sertraline

Studies

There is only one randomized prospective study (Class III), which revealed that sertraline was ineffective for migraine prophylaxis.

Fluvoxamine

Studies

In the study by Bánk, with 70 participants, the individuals were randomly subdivided into 2 treatment groups: amitriptyline ($n = 32$; 24 women; with a dose of 25 mg/day) and fluvoxamine ($n = 32$; 23 women; with a dose of 50 mg/day). At the end of the study, there was an improvement in headache rates for both treatments.

Conclusion

There is insufficient evidence to indicate the use of citalopram, escitalopram, fluoxetine, sertraline, fluvoxamine, paroxetine, or mirtazapine for migraine prevention.

SEROTONIN AND NORADRENALINE REUPTAKE INHIBITORS

Venlafaxine

General aspects

Venlafaxine is a potent inhibitor of presynaptic reuptake of serotonin and norepinephrine and a weak dopamine reuptake inhibitor. Its metabolism is widely mediated by cytochrome P450. The half-life times of venlafaxine and its active metabolite are 5 and 11 hours, respectively, and their elimination occurs essentially through urine.

Studies

A parallel, randomized, double-blind, placebo-controlled study evaluated 60 patients in 3 groups for 10 weeks: venlafaxine 75 mg, 150 mg, or placebo. Significant reductions in migraine frequency and consumption of analgesics were observed for the active groups. Bulut et al. conducted a double-blind, randomized, crossover clinical trial in which they analyzed individuals with episodic migraine who used venlafaxine 150 mg/day and amitriptyline 75 mg/day. In both groups, there were significant reductions in the
frequency, duration, and intensity of migraine, with no statistical difference between them.

According to the meta-analysis by Wang et al., the clinical trials with venlafaxine are not very robust, since most of them were considered to have a clear risk of bias. The mode of randomization was not reported in all studies; two of them were blind while two were open; and most had no published protocol. Despite these methodological limitations, venlafaxine promoted significant reductions in the frequency, duration, and intensity of migraine.

Duloxetine

General aspects

Duloxetine acts as a double inhibitor of serotonin and norepinephrine reuptake, but it weakly inhibits dopamine reuptake as well.

Studies

Two studies were included: a Class II study and a Class III study. Young et al. published a prospective study on duloxetine among patients without depression who presented EM (on 4 to 10 days per month), and who were titrated for a final dose of 120 mg. In an intention-to-treat analysis, the subjects went from 9.2 \(\pm \) 2.7 days to 4.5 \(\pm \) 3.4 days of headache per month \((p < 0.001) \). As a result, 52% of the patients had an improvement \(\geq 50\% \) in the number of headache days. The authors concluded that duloxetine, at high doses, may be effective in individuals with episodic migraine, even without depression.

In 2019, Kisl et al. studied the preventive effect of duloxetine on EM through a prospective, placebo-controlled, double-blind clinical trial with 27 patients (25 women) without depression. The patients started at a dose of 30 mg/day of duloxetine in the 1st week and their dose was increased to 60 mg/day in the 2nd week, which was then continued until the end of 8 weeks of treatment. The authors concluded that duloxetine was more effective than placebo in preventing migraine, with improvements in the frequency of migraine attacks (2.0 versus 1.3), frequency of migraine days per month (3.3 versus 1.7), and other parameters (intensity and self-esteem) (3.3 versus 1.7).

Conclusion

There is a consensus that venlafaxine and duloxetine are probably effective for migraine prophylaxis, especially in individuals who also have psychiatric comorbidities, such as anxiety disorders and depression.

There is insufficient evidence to indicate the use of citalopram, escitalopram, fluoxetine, sertraline, fluvoxamine, paroxetine, or mirtazapine for migraine prevention.

CALCIUM CHANNEL BLOCKERS

General aspects

Calcium channel blockers (CCBs) form a heterogeneous group of medications that began to be studied for prophylactic migraine treatment in 1981. The mechanism of action of these drugs in migraine is debatable. It has been postulated that blockade of calcium channels inhibits the entry of extracellular calcium into the cells of the muscle layer of the brain vessels. However, direct blockade of 5-HT receptors has been considered essential for calcium channel blockers to be effective for migraine, especially regarding flunarizine and verapamil.

Flunarizine

General aspects

Flunarizine is the most widely used drug in this group. In addition to being a nonselective calcium channel antagonist, it blocks the voltage-dependent sodium channels and can reduce the number of occurrences and the duration of cortical spreading depression (CSD). It may decrease mitochondrial injury induced by CSD and has antagonistic action for the dopaminergic receptor D2, which can also contribute to the prophylactic migraine effect.

Studies

Although there are 7 double-blind, randomized, placebo-controlled studies in which flunarizine, in a single nocturnal dose of 10 mg, was shown to reduce the frequency, the duration, and the intensity of migraine attacks, these studies do not present the necessary requirements to categorize this finding as Level A evidence due to various factors, especially the low number of subjects studied.

Three meta-analysis studies corroborate the positive results from primary outcomes, with the caveat in one of them that the decrease in the frequency of headache attacks would take place at weeks 8, 12, 16, and 20, but not in week 4.

There are comparative studies, among which the ones of greatest relevance are precisely those that demonstrated effects comparable with those from drugs of recognized efficacy such as propranolol and topiramate.

The primary outcomes from other comparative analyses showed that the efficacy of flunarizine was similar to that of metoprolol, nifdefipine, valproate, and topiramate.

Nicardipine

Studies

In a single Class II study, nicardipine, at a dose of 20 mg twice daily, was evaluated among 30 migraine patients. It was shown to have greater efficacy than placebo regarding decreased frequency, intensity, and duration of attacks. However, a reanalysis of this study revealed, through the confidence interval (CI), that there was no statistical difference in the frequency of migraine attacks. Therefore, there are no studies showing an indication for use of nicardipine in prophylactic treatment of migraine. Nicardipine is no longer commercialized in Brazil.

Nifdefipine

Studies

There are two Class III studies on nifdefipine for prophylactic treatment of migraine. The first of these, with 24 patients,
using 30 mg per day, revealed that there was no difference in the primary outcome in relation to placebo.67 The second, with 28 patients, using nifedipine at a dose of 5 mg, 3 times a day, demonstrated its efficacy in reducing the frequency of attacks.68 A meta-analysis on these two studies showed that nifedipine was not superior to placebo.60 In a comparative study with propranolol, the adverse events of nifedipine were the main factor responsible for the high rate of abandonment among patients, and it was concluded that this is not a drug of choice for prophylactic treatment of migraine.69

Nimodipine

Studies

There are three class II and three class III studies, all of them double-blind, randomized and placebo-controlled, on the efficacy of nimodipine for migraine prophylaxis, with discordant results. A meta-analysis using the results from these studies and others concluded that there is no difference between nimodipine and placebo.60

Verapamil

Studies

The prophylactic effect of verapamil for treating migraine patients was evaluated in two class III, double-blind, randomized, placebo-controlled studies, but with only 12 patients70 and 14 patients.39 The doses used were 240 mg per day19 and 320 mg per day.70 Although in both studies the results were considered positive, a subsequent reanalysis of the results did not identify any difference in reducing the frequency of attacks.60

Conclusion

There is a consensus regarding the efficacy of flunarizine and its indication for prophylactic treatment of migraine, taking into consideration the absolute and relative contraindications. There is also a consensus that nocardipine, nifedipine, nimodipine, and verapamil should not be used in migraine prophylaxis.

OTHER DRUGS

Antihistamine (Cyproheptadine)

General aspects

Cyproheptadine is a first-generation antagonist of H1 histaminergic receptors, 5-HT2 serotonergic receptors, and calcium channels. Cyproheptadine blocks the activity of 5-HT2 receptors in the vascular wall and platelets, thereby reducing platelet aggregation.71

Studies

A small number of clinical trials have shown that cyproheptadine is effective for preventive treatment of migraine. In a double-blind, randomized crossover study involving 60 adult patients, cyproheptadine was shown to be safe and more effective than placebo after 12 weeks, although the groups were not adequately matched, thus reducing the study power (Class III).72 A study by Rao et al.73 with a double-blind, randomized, placebo-controlled design, included 259 patients aged between 16 and 53 years old divided into 4 groups: placebo, cyproheptadine, propranolol, and cyproheptadine and propranolol for 12 months. It demonstrated that cyproheptadine and propranolol were significantly more effective than placebo. The highest efficacy was obtained when cyproheptadine and propranolol were used in combination (Class II).

Conclusion

Despite the small number of trials, cyproheptadine is a good choice for preventive treatment of migraine, in association with other prophylactic drugs and in thinner patients.

Serotoninergic antagonist (Pizotifen)

General aspects

Pizotifen is a serotonergic antagonist that acts primarily on 5-HT2\textsubscript{A} and 5-HT2\textsubscript{C} receptors. It has mild antihistamine and anticholinergic action.

Studies

The efficacy and safety of pizotifen were compared against placebo in adults,74,75 showing good results for pizotifen. Randomized, double-blind comparative studies comparing pizotifen with other drugs have sometimes included a placebo arm or more than one arm with an active drug. In terms of efficacy, pizotifen was similar to the comparison drug (iprazochrome,75,76 flunarizine,77–80 metoprolol,81 propranolol,82 nimodipine,83 propranolol, and amitriptyline),84 while one study showed that pizotifen was less effective than cyclandelate.85

A double-blind, randomized, crossover dosing study was conducted to compare 2 schemes:86 a single dose or 3 doses per day of pizotifen (equal total dose of 1.5 mg/day in these two schemes). Their efficacy was similar, but there was better tolerability of the single dose. Cleland et al.87 conducted a partially open and partially double-blind study, both with crossover design, to compare prophylaxis for migraine using pizotifen with treatment using sumatriptan only in the attacks. Only when the patient had more than four migraine attacks per month was it better to use pizotifen. Unfortunately, a German study88 could not be evaluated here since it did not contain an abstract and the authors of the present review were unable to obtain the original text. Level of evidence/recommendation: 3B.

Conclusion

Studies on pizotifen are typically old, sometimes designed before the criteria established by the International Headache Society had been defined. Nonetheless, it is a safe drug, even during pregnancy. Data are insufficient to determine the effectiveness of Pizotifen.

Melatonin

General aspects

The mechanism of action of melatonin is thought to involve anti-inflammatory effects, free radical elimination effects,
inhibition of dopamine release, reduction of positive regulation of proinflammatory cytokine, and protection of neurotoxicity through inhibiting glutamate release.99,100

Studies
A randomized, double-blind, placebo-controlled study was conducted among 196 subjects with episodic migraine with aura or without aura. Melatonin 3 mg was compared with amitriptyline 25 mg and placebo for 3 months. Melatonin was better than amitriptyline and placebo, with a reduction > 50% in the frequency of migraine.91

Conclusion
There is a consensus that melatonin is possibly effective for prophylactic treatment of EM (Class II; Level C).

Alpha-Adrenergic blockers (Clonidine)

General aspects
Clonidine is an imidazole derivative that is an antagonist of the \(\alpha_2\) presynaptic receptors in the periphery and in the central nervous system (CNS). Peripherally, it inhibits the release of norepinephrine from sympathetic nerves and decreases the sympathetic tone by modulating vasodilation and constriction.92,93 Centrally, it inhibits the electrical currents of calcium ions, thus mediating analgesia in the spinal cord.94

Studies
Clonidine has been evaluated through double-blind and placebo-controlled studies92,93,95–103 and in comparisons with propranolol104 and metoprolol105 in different age groups. Some studies have not shown any evidence in favor of clonidine. Other studies have presented conflicts, demonstrating some parameters of improvement and others of equality to placebo. In the study comparing clonidine with propranolol,104 the two agents had similar prophylactic effects. Because of the divergence of the data, clonidine is not considered effective for prophylactic treatment of EM.

Conclusion
There is a consensus that clonidine is not effective for prophylactic treatment of EM.

Neuroleptics (Quetiapine, Aripiprazole, and Ziprasidone)

General aspects
Neuroleptics antagonize serotonin (5-HT\(_{1A}\) and 5-HT\(_{2}\)), dopamine (D1 and D2), histamine (H\(_1\)), and adrenergic receptors (alpha-1 and alpha-2).106

Studies
Open case-control studies have evaluated quetiapine,107,108 a case-control study has evaluated aripiprazole,109 and there is a case report on ziprasidone.110 All of these studies demonstrated that these agents were effective for controlling EM attacks. However, the levels of evidence and recommendation were very low, which means that there is no indication for their use as prophylactics.

Conclusion
The neuroleptics quetiapine and aripiprazole have been shown to be effective for treating migraine in open case-control studies. Ziprasidone was not evaluated at all. For these reasons, there is a consensus that although quetiapine and aripiprazole were effective in open studies, they cannot be considered prophylactic due to lack of data from controlled studies.

Vitamin K inhibitor (Warfarin)

General aspects
Warfarin is a vitamin K antagonist that acts by inhibiting platelet aggregation and secretion of 5-hydroxytryptamine (5-HT),111 acting in the coagulation cascade of intrinsic factors (factors II, VII, IX, X).112

Studies
Nine case reports112–120 and two open studies have evaluated the use of warfarin.111,121 The doses used were 5 to 10 mg in a single dose. However, most studies have reported on the use of warfarin for maintaining INR between 2 and 3. The studies have suggested that warfarin is effective for controlling EM attacks. In most studies, the improvement of migraine was detected serendipitously when using warfarin in associated clinical situations such as pulmonary thromboembolism, peripheral venous thrombosis, and atrial fibrillation. The clinical response seems to be more marked in cases of migraine with aura.

Conclusion
Warfarin is possibly effective for prophylaxis of EM, especially in patients with migraine with aura. There is a consensus that, due to the risk-benefit balance, warfarin should not be used in migraine prophylaxis.

Leukotriene receptor antagonist (Montelukast)

General aspects
Leukotriene receptor agonists produce a reduction in proinflammatory mediators, specifically in the production of leukotriene (LTB\(_4\)) in leukocytes, thus altering platelet aggregability.122–125

Studies
Montelukast has been evaluated through a multicenter, double-blind placebo-controlled study,126 two case-control studies,127,128 and four case reports.129–132 The multicenter, double-blind, placebo-controlled study showed that this drug was not more effective than placebo. The open case studies demonstrated drug effectiveness and there was also a therapeutic response in the case reports. Montelukast is considered a possibly ineffective drug for prophylactic treatment of migraine.
Conclusion
There is a consensus that montelukast should not be indicated for prophylactic treatment of episodic migraine.

Statins (Simvastatin and Atorvastatin)

General aspects
Statins have anti-inflammatory properties, vasomotor effects, and effects on platelet coagulation, in addition to central action on the trigeminal caudal nucleus.

Studies
Atorvastatin 40 mg/day (n = 46) was compared in a double-blind study with sodium valproate 500 mg/day (n = 36) for prophylaxis of high-frequency migraine (6 to 15 days/month). After 3 months of treatment, it was shown to be able to reduce the number of days with pain, the duration and intensity of attacks, and the consumption of analgesics.

In an open study, 20 mg simvastatin (n = 29 women with dyslipidemia) was compared with propranolol 60 mg (n = 25 women) for treatment of EM over a 90-day treatment period. Both groups reduced the number of days with headache by >50%. In another study, use of simvastatin 20 mg + vitamin D 1,000 units twice daily was compared with a placebo group for treatment of EM over a 24-week follow-up period. In the simvastatin group, 25% of the patients reduced the number of migraine days by >50% with 12 weeks of treatment and 29% achieved this after 24 weeks of treatment.

Conclusion
There is a consensus that atorvastatin and simvastatin are possibly effective for prophylactic treatment of EM. However, they should be used primarily as adjuvant therapy for patients with dyslipidemia. – Table 1.

RATIONAL POLYTHERAPY

True polytherapy and false polytherapy
Polytherapy can be divided into two subtypes: 1) true polytherapy; and 2) false polytherapy. The first consists of prescribing two or more drugs for treating migraine and the second is a situation in which at least one drug is directed to treating comorbidity.

Evidence and Justifications for rational polytherapy
Rational polytherapy in migraine is a topic that has been discussed for a long time. Preventive treatment of episodic migraine always begins with monotherapy, but if attacks become more frequent and refractory to monotherapy, the natural tendency is to use associations of drugs in an add-on system. Although this is a common practice in the offices of headache specialists, only a small number of clinical trials have been conducted on polytherapy within migraine prophylaxis. – Table 2 briefly describes the studies that have supported the use of polytherapy.

Conclusion
Monotherapy is the rule for the initial treatment of EM. In some situations, polytherapy may be indicated. There is no consensus on when to indicate it. There is a consensus that polytherapy should not be started until after at least 2 drugs with recommendation level A and/or B have been tried, at appropriate doses and for a minimum of 6 weeks.

Authors’ Contributions
PSFS: Discussion, group coordinator, writing, reviewing, conceptualization; EMM, PAK: discussion, group coordinator, writing, reviewing, conceptualization, editing, data collection; AOK, ATNMC, CAPR, EMS, GOMT, IP, LCC, LMB, MFPP, PMP, RPSN, HCC: writing, reviewing, discussion, conceptualization; EJP, JJFC: writing, reviewing, editing, group coordinator, discussion; JAS, LPQ, MNPS: writing, reviewing, editing, discussion; JAJM, JNAS, MENMC: writing, reviewing, discussion; JGS: writing; MRCF, MEJ, PFMMF, YDF: writing, reviewing; PFMRF: conceptualization, data collection, writing, reviewing, editing.

Conflict of Interest
AOK: Speaker for Allergan, Ipsen Pharma, Merz, and Onyxcan Cantera; AT: Lilly, Teva, Ache, Supera, Allergan, and Novartis; CAPR: Teva, Novartis, Eli Lilly, Lundbeck, Ache, Apsen, and EJPC: Speaker for Novartis, Allergan, Libbs, and Lilly; EMS: Speaker for Libbs, Allergan, Novartis, Lilly, Lundbeck, and Teva. Advisory board: Allergan, Libbs, Teva, and Lundbeck; EMM: Speaker for Teva, Novartis, Eli Lilly, and Allergan; Advisory board: Libbs and Eli Lilly; GOMT: Speaker for Eli Lilly; HCC: Speaker for Allergan and Eli Lilly; ID, JAMJ, BAJJ, MRCFF, MEJ, PFMMF, RPSN, YDF: No conflict of interests to declare; AJS: Speaker for Eli Lilly, Novartis, and Teva; JCC: Speaker for Eli Lilly, Novartis, Teva, and Libbs; Advisory board: Teva, Novartis, and Eli Lilly; JC: Speaker for Teva, Novartis, and Allergan, EU Lilly; LCC: Speaker for Allergan, Novartis, and Sano; Advisory board: Allergan; LMB: Speaker for Novartis; LDQ: Speaker for Eli Lilly and Allergan; Advisory board: Eli Lilly and Teva; MNPS: Speaker for Eli Lilly, Novartis, Teva, Allergan, and Libbs; Advisory board: Libbs; Sanofi, Eli Lilly, and Libbs; MENMC: Speaker for Eli Lilly, Novartis, Teva, and Allergan; Advisory board: Eli Lilly; MFPP: Grants from Fapesp and CNPq; personal fees from Allergan, Eurofarma, Eli Lilly, Libbs, Novartis, Pfizer, and Teva, during studies; PMP: Speaker for Novartis, Teva, Eli Lilly, and Libbs; Advisory board: Libbs; PSFS: Speaker for Teva, Novartis, Allergan, EMS, and Politec; Advisory board: Libbs and Eli Lilly; PAK: Fees for services from Libbs, Novartis, Allergan, Livanova, and Teva; PASRF: Speaker for Eli Lilly, Novartis, Allergan, and Libbs; Advisory board: Novartis, and Eli Lilly.

References
<table>
<thead>
<tr>
<th>Drug</th>
<th>Frequency of dosage and administration route</th>
<th>Adverse events</th>
<th>Evidence level</th>
<th>Recommendation level</th>
<th>Pregnancy/breastfeeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITIVE EVIDENCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angiotensin-converting enzyme inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lisinopril</td>
<td>10–20 mg/day 2x/day; maximum 80 mg orally</td>
<td>Dry cough, fatigue, dizziness, vertigo, lipothyria, hyperkalemia</td>
<td>1 class II study</td>
<td>C - D - D / Use with care</td>
<td>Breastfeeding: Low risk</td>
</tr>
<tr>
<td>Enalapril</td>
<td>10–20 mg/day 1x or 2x/day; maximum 40 mg orally</td>
<td></td>
<td>1 class II study</td>
<td>C - D - D / Use with care</td>
<td>Breastfeeding: Potential severe adverse events in the baby; stop medication or breastfeeding</td>
</tr>
<tr>
<td>Captopril</td>
<td>50 mg/day; up to 450 mg/day 3x/day orally</td>
<td></td>
<td>1 class III study</td>
<td>C - D - D / Use with care</td>
<td>Breastfeeding: Very low risk</td>
</tr>
<tr>
<td>Angiotensin receptor blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candesartan</td>
<td>8–16 mg/day; maximum 32 mg 1–2x/day orally</td>
<td>Dizziness, arterial hypotension, fatigue, paresthesia, hyperkalemia</td>
<td>2 class I studies</td>
<td>C - D - D / Contraindicated</td>
<td>Breastfeeding: low risk; moderately safe; monitor use</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flunarizine</td>
<td>5–10 mg/day 1x at night orally</td>
<td>Somnolence, weight gain, depression, fatigue, vertigo, arterial hypotension, hypokinesis, tremor, rigidity</td>
<td>Class II (≥ 2 studies)</td>
<td>Level B: Probably efficacious</td>
<td>Category C Breastfeeding: High risk</td>
</tr>
<tr>
<td>Nicardipine</td>
<td>60–120 mg/day 3x/day orally</td>
<td>Headache, dizziness, facial redness, dyspnea</td>
<td>1 class II study and 1 class IV study</td>
<td>Level U: conflicting data</td>
<td>Unknown fetal risk due to lack of studies Breastfeeding: avoid it because of lack of information.</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>10–60 mg/day - 1–3x/day orally</td>
<td>Dizziness, leg edema, facial redness, headache</td>
<td>2 class III studies (1 positive and one negative)</td>
<td>Level U: conflicting data</td>
<td>Category C Breastfeeding: very low risk</td>
</tr>
<tr>
<td>Neuroleptics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quetiapine</td>
<td>25–150 mg/ day 1 or 2x/day Maximum 800 mg orally</td>
<td>Excessive sedation, confusion, weight gain</td>
<td>2 class III studies</td>
<td>Level C: Possibly efficacious</td>
<td>Category C Breastfeeding: Very low risk</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Drug</th>
<th>Frequency of dosage and administration route</th>
<th>Adverse events</th>
<th>Evidence level</th>
<th>Recommendation level</th>
<th>Pregnancy/breastfeeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aripiprazole</td>
<td>5–20 mg/day
1x/day
Maximum 30 mg orally</td>
<td></td>
<td>1 class III study</td>
<td>Level U: Conflicting data</td>
<td>Category C
Breastfeeding: Low risk</td>
</tr>
<tr>
<td>Ziprasidone</td>
<td>40–80 mg/day
2x/day
orally</td>
<td></td>
<td>1 class IV study</td>
<td>Level U: Conflicting data</td>
<td>Category C
Breastfeeding: High risk</td>
</tr>
<tr>
<td>Statins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>10–80 mg/day- average 20 mg
1x/day
orally</td>
<td>Headache, dizziness, nausea, abdominal pain, insomnia</td>
<td>1 class II study</td>
<td>Level C: Possibly efficacious</td>
<td>Category X
Breastfeeding: High risk</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>5-80 mg/day - average 20 mg
1x/day
orally</td>
<td></td>
<td>1 class II study and 1 class III study</td>
<td>Level C: Possibly efficacious</td>
<td>Category X
Breastfeeding: High risk</td>
</tr>
<tr>
<td>Vitamin K inhibitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warfarin</td>
<td>2.5–5 mg/day
Maximum 10 mg/day (INR 2–3)
1x/day
orally</td>
<td>Digestive, urinary, oral, and nasal bleeding</td>
<td>2 class III studies</td>
<td>Level C: Possibly efficacious</td>
<td>Category X
Breastfeeding: Very low risk</td>
</tr>
<tr>
<td>Other drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melatonin</td>
<td>3 mg/day
1x at night
orally</td>
<td>Fatigue, somnolence, difficulty in concentrating, depressive symptoms, headache, diarrhea, abnormal dreams,</td>
<td>1 class II study</td>
<td>Level C: Possibly efficacious</td>
<td>C / C / C
Use with care
Breastfeeding: Very low risk</td>
</tr>
<tr>
<td>Cyproheptadine</td>
<td>1–6.5 mg/day
1x/day
orally</td>
<td>Somnolence, increased appetite, weight gain, dry mouth, blurred vision, glaucoma</td>
<td>≥ 2 class III studies and 1 class II study</td>
<td>Level C: Possibly efficacious</td>
<td>Category B
Breastfeeding: Contraindicated</td>
</tr>
<tr>
<td>Pizotifen</td>
<td>1.5–3.0 mg/day
1–3x/day
orally</td>
<td>Weight gain</td>
<td>≥ 2 class II studies</td>
<td>Level B: Probably efficacious</td>
<td>Category B
Breastfeeding: Not recommended</td>
</tr>
<tr>
<td>Drug</td>
<td>Frequency of dosage and administration route</td>
<td>Adverse events</td>
<td>Evidence level</td>
<td>Recommendation level</td>
<td>Pregnancy/breastfeeding</td>
</tr>
<tr>
<td>Telmisartan</td>
<td></td>
<td></td>
<td>1 class I study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Frequency of dosage and administration route</td>
<td>Adverse events</td>
<td>Evidence level</td>
<td>Recommendation level</td>
<td>Pregnancy/breastfeeding</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
<td>----------------</td>
<td>----------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Selective serotonin reuptake inhibitor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sertraline</td>
<td>50–100 mg/day 1x/day Maximum 200 mg orally</td>
<td>See escitalopram</td>
<td>1 class II study</td>
<td>Level C: Possibly ineffectacious</td>
<td>Category C Breastfeeding: Very low risk</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>20–60 mg/day 1x/day orally</td>
<td></td>
<td>≥ 2 class II studies</td>
<td>Level B: Probably ineffectacious</td>
<td>Category C Breastfeeding: Low risk</td>
</tr>
<tr>
<td>Citalopram</td>
<td>10–20 mg/day 1x/day orally</td>
<td></td>
<td>2 class II studies</td>
<td>Level B: Probably ineffectacious</td>
<td>Category B and C Breastfeeding: Very low risk</td>
</tr>
<tr>
<td>Other drugs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clonidine</td>
<td>25 to 75 µg/day 2x/day Maximum 900 µg orally</td>
<td>Anxiety, tiredness, dry mouth, dizziness, dyspnea, palpitations, nausea, vomiting, stomachache, abdominal bloating, orthostatic hypotension, fainting, somnolence, rash, headache, irritability, insomnia</td>
<td>≥ 2 class I studies</td>
<td>Level A: Established as not efficacious</td>
<td>Category C Breastfeeding: High risk</td>
</tr>
<tr>
<td>Montelukast</td>
<td>5–20 mg/day orally</td>
<td>Not reported</td>
<td>Class I, class II and class III studies</td>
<td>Level B: Probably ineffectacious</td>
<td>Category C Breastfeeding: Low risk</td>
</tr>
<tr>
<td>Study</td>
<td>Drug Type</td>
<td>Drug</td>
<td>n</td>
<td>Doses</td>
<td>I</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>---</td>
<td>----------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Bordini et al.146</td>
<td>PPN</td>
<td>vs FNZ</td>
<td>15</td>
<td>PPN 60 mg/day</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>vs PPN + FNZ</td>
<td></td>
<td>15</td>
<td>FNZ 10 mg/day</td>
<td></td>
</tr>
<tr>
<td>Pascual et al.147</td>
<td>BB</td>
<td>vs VPA</td>
<td>52</td>
<td>BB 40–160 mg/day</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>vs BB + VPA</td>
<td></td>
<td></td>
<td>VPA 300–1,000 mg/day</td>
<td></td>
</tr>
<tr>
<td>Rampello et al.148</td>
<td>AMT</td>
<td>vs CTP</td>
<td>44</td>
<td>AMT 50 mg/day</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>vs AMT + CTP</td>
<td></td>
<td>29</td>
<td>CTP 20 mg/day</td>
<td></td>
</tr>
<tr>
<td>Keskinbora et al.148</td>
<td>TPM</td>
<td>vs AMT</td>
<td>5</td>
<td>TPM 25–200 mg/day</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>vs TPM + AMT</td>
<td></td>
<td>4</td>
<td>AMT 10–150 mg/day</td>
<td></td>
</tr>
<tr>
<td>Domingues et al.149</td>
<td>PPN</td>
<td>vs NTP</td>
<td>25</td>
<td>PPN 80 mg/day</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>vs PPN + NTP</td>
<td></td>
<td>24</td>
<td>NTP 40 mg/day</td>
<td></td>
</tr>
<tr>
<td>Krymchantowski et al.150</td>
<td>TPM</td>
<td>vs NTP</td>
<td>80</td>
<td>TPM 100 mg/day</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>vs TPM + NTP</td>
<td></td>
<td>27</td>
<td>NTP 30 mg/day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vs TPM + PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>vs NTP + PCB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Clinical trials that used polytherapy in episodic migraine

<table>
<thead>
<tr>
<th>Drug</th>
<th>Frequency of dosage and administration route</th>
<th>Adverse events</th>
<th>Evidence level</th>
<th>Recommendation level</th>
<th>Pregnancy/breastfeeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nimodipine</td>
<td>90 mg/day – 3x/day; Maximum 360 mg orally</td>
<td>Vertigo, facial redness, muscle pain, abdominal pain, weight loss, pruritus</td>
<td>1 class I study (negative); 2 class II studies (negative) and 2 class III studies (positive)</td>
<td>Level U: Conflicting data.</td>
<td>Undetermined risk in pregnancy; Breastfeeding: Very low risk</td>
</tr>
<tr>
<td>Verapamil</td>
<td>120–480 mg/day; 3–4x/day or R = 1–2x/day orally</td>
<td>Constipation, skin erythema, headache</td>
<td>2 class IV studies</td>
<td>Level U: Conflicting data.</td>
<td>Category C; Breastfeeding: Very low risk</td>
</tr>
</tbody>
</table>
Table 2 (Continued)

<table>
<thead>
<tr>
<th>Study</th>
<th>Drug</th>
<th>Type</th>
<th>n</th>
<th>Doses</th>
<th>I</th>
<th>D</th>
<th>F</th>
<th>AC</th>
<th>AG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serotonin and noradrenaline reuptake inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>37.5–150 mg/day orally</td>
<td>1x/day</td>
<td>2x/week</td>
<td>≥ 2 class II studies</td>
<td>Level B: Probably efficacious</td>
<td>Category C</td>
<td>Breastfeeding: Use with care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duloxetine</td>
<td>30–120 mg/day orally</td>
<td>1x/day</td>
<td>1x/week</td>
<td>2 class II studies</td>
<td>Level B: Probably efficacious</td>
<td>Category C</td>
<td>Breastfeeding: Use with care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serotonin reuptake inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escitalopram</td>
<td>5–10 mg/day orally</td>
<td>1x/day</td>
<td>1x/week</td>
<td>1 class III study</td>
<td>Level C: Possibly efficacious</td>
<td>Category B</td>
<td>Breastfeeding: Very low risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paroxetine</td>
<td>20 mg/day orally</td>
<td>2x/day</td>
<td>1x/week</td>
<td>1 class IV study</td>
<td>Level U: Conflicting data</td>
<td>Category D</td>
<td>Breastfeeding: Very low risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>50 mg/day orally</td>
<td>1x at night</td>
<td>1x/week</td>
<td>1 class II study</td>
<td>Level C: Possibly efficacious</td>
<td>Category C</td>
<td>Breastfeeding: Very low risk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: A, adults; AC, consumption of analgesics; AMT, amitriptyline; BB, beta-blocker; CTP, citalopram; D, duration; ES, age group; F, frequency; FNZ, flunarizine; I, intensity; NA, not assessed; NS, not significant; NTP, nortriptyline; P, pediatrics; PCB, placebo; PPN, propranolol; S, significance with \(p < 0.05; \) TPM, topiramate; VPA, valproic acid.
↓ reduction, but without statistical analysis.
Consensus for prophylactic treatment of episodic migraine: part II

Ozyalcin SN, Talu GK, Kiziltan E, Yucel B, Ertas M, Disci R. The efficacy and safety of venlafaxine in the prophylaxis of migraine. Headache 2005;45(02):144–152

Amery WK. Flunarizine, a calcium channel blocker: a new prophylactic drug in migraine. Headache 1983;23(02):70–74

Rau JC, Dodick DW. Other Preventive Anti-Migraine Treatments: ACE Inhibitors, ARBs, Calcium Channel Blockers, Serotonin Antagonists, and NMDA Receptor Antagonists. Curr Treat Options Neurol 2019;21(04):17

Dienert HC, Matías-Guiu J, Hartung E, et al. Efficacy and tolerability in migraine prophylaxis of flunarizine in reduced doses: a

Prusinski A. Monotherapy or polytherapy in migraine. Neuroepidemiology 1987;6(04):186–189

