Direct Methenylation of 4-Alkylpyridines Using Eschenmoser’s Salt

G. N. Shivers, S. L. Tun, S. L. McLean, F. C. Pigge

One-pot • Metal-free • Open to air
• R = aryl, alkyl, heteroatom • 20 Examples • Up to 96% yield
Catalytic Asymmetric [3+3] Cycloaddition of Activated Isocyanides with Azomethine Imines

- High yields
- Good to excellent stereoselectivities
- Wide substrate scope
- Simple procedure
- Late-stage functionalization of complex bioactive molecules

5 mol% Ag$_2$CO$_3$
10 mol% L^*

$R^1 = \text{aryl, heteroaryl, alkyl}$
$R^2 = \text{H, aryl, heteroaryl, alkyl}$
$R^3 = \text{H, Me}$
$\text{EWG} = \text{phosphine oxide, phosphonate, ester, amide}$

THF, 25 $^\circ$C, 48 h

kinetic resolution
$k = 34-525$

Translation of a Phosphine- and Azide-Based Reaction to Chemical Modification of Biomolecules in Ionic Liquid

- Ionic liquid
- $R = \text{biomolecule}$
- Peptide/protein
- DNA
- Saccharide

Synlett 2022, 33, 1873–1878
DOI: 10.1055/a-1904-0582

L.-F. Tao
L. Qian*
J.-Y. Liao*
Zhejiang University, P. R. of China

Synlett 2022, 33, 1879–1883
DOI: 10.1055/a-1908-2066

C. P. Uzoewulu
J. Ohata*
North Carolina State University, USA
A. K. Yudin*
The University of Toronto, Canada

Synthetic Tools that Enable Synthesis and Understanding of Bioactive Macrocycles

T. G. Driver*
University of Illinois at Chicago, USA

Unlocking Electrophilic N-Aryl Intermediates from Aryl Azides, Nitroarenes, and Aryl Amines in Cyclization–Migration Reactions

G. N. Shivers
S. L. Tun
S. L. McLean
F. C. Pigge*
University of Iowa, USA

Direct Methenylation of 4-Alkylpyridines Using Eschenmoser’s Salt
Synthetic and Mechanistic Investigation of an Unexpected Intramolecular 1-5 Nitrogen to Carbon Tosyl Migration

G. S. Mathenjwa
M. P. Akerman
M. L. Bode
C. G. Veale*
University of Cape Town, South Africa

α-Metalated Isocyanides Toward a Tangible Reagent Space

M. Fragkiadakis
C. G. Neochoritis*
University of Crete, Greece

Oxone-Promoted Cyclization/Hydrolysis of 1,5-Enenitriles Initiated via Direct C(sp^3)-H Oxidative Functionalization: Access to Pyrrolidine-2,4-diones

Y.-T. Guan
J.-Z. Li
X.-E. Cai
S.-J. Hu
J.-H. Zhang
K.-W. Lei*
H. Liu*
W.-T. Wei*
Ningbo University, P. R. of China
Wenzhou University, P. R. of China
Letter

Stereoselective Synthesis of (Z)-1,2-Bis(arylsulfanyl)ethenes with Calcium Carbide as a Solid Alkyne Source

Q. Wang
Z. Wang
Z. Li*
Northwest Normal University, P. R. of China

Abstract

Inexpensive and easy-to-handle alkyne source
High stereoselectivity
Wide functional-group tolerance
Eighteen examples
Extension to gram scale

Scheme

![Scheme](image_url)

R = H, Me, MeO, tBu, F, Cl, Br, CF3, etc.

Keywords

Stereoselective synthesis
Calcium carbide
Arylsulfanyl ethenes
Alkyne source

Letter

Heterogeneous Photocatalytic Radical Synthesis of Aryl Allyl Sulfones

L. Wang*
L.-f. Zhang
Changzhou Vocational Institute of Engineering, P. R. of China

Abstract

Scheme

![Scheme](image_url)

15 examples, 57–81%

Keywords

Heterogeneous photocatalysis
Radical coupling
Aryl allyl sulfones
DABCO(SO2)2

Letter

Synthesis of Dehydromuscone by an Alkene Metathesis Macrocyclization Reaction at 0.2 M Concentration

F. Garnes-Portolés
J. Sánchez-Quesada
E. Espinós-Ferri
A. Leyva-Pérez*
Universidad Politécnica de València-Consejo Superior de Investigaciones Científicas, Spain

Abstract

Scheme

![Scheme](image_url)

0.1 mol% catalyst
0.2 M concentration

Keywords

Alkene metathesis
Macrocyclization
Dehydromuscone
Industrial fragrance
Avoiding starting macrocycles
Key non-diluted macrocyclization reaction (0.2 M) with 0.1 mol% Grela's catalyst

© 2022. Thieme. All rights reserved.
Free-Radical-Involved Trifluoromethylthiolation Cyclization of Alkenes To Access SCF₃-Substituted Indolo[2,1-a]isoquinolines

Y. Li
L. Li*
Q. Yan
X. Li
Z.-Q. Liu*
Z. Li*
Hebei University, P. R. of China
Nanjing University of Chinese Medicine, P. R. of China

Stereoselective Synthesis of Acyclic Skeleton of Boscartin A

D. Saha
M. H. Sahana
G. H. Mandal
R. K. Goswami*
Indian Association for the Cultivation of Science, India

Rhodium(I)-Catalyzed [2+2+1]-Carbonylative Cycloaddition of Diynes with Anthracene α-Diketone as the Source of CO

J. Jia
Y. Yamaguchi
T. Ueda
H. Yamada
K. Kakuchi
T. Morimoto*
Nara Institute of Science and Technology (NAIST), Japan