B. YIN, X. LI, Z.-X. LI, X.-X. ZHU, L. ZHANG, X.-L. ZHOU, J.-B. XU, F.-Z. CHEN, P. TANG*, F. GAO* (SICHUAN UNIVERSITY AND SOUTHWEST JIAOTONG UNIVERSITY, CHENGDU, P. R. OF CHINA) Adenophorone, An Unprecedented Sesquiterpene from *Eupatorium adenophorum*: Structural Elucidation, Bioinspired Total

Synthesis and Neuroprotective Activity Evaluation Angew. Chem. Int. Ed. **2023**, 62, e202306326 DOI: 10.1002/anie.202306326.

Bioinspired Total Synthesis and Bioactivity Evaluation of a Novel Sesquiterpene (–)-Adenophorone

Significance: Neurodegenerative diseases (NDs), such as Alzheimer's disease and Parkinson's disease, have gained public attention. Excessive formation of reactive oxygen species can result in oxidative stress, a common cause of NDs. In light of studies finding new natural neuroprotective agents, the authors isolated (–)-adenophorone, a sesquiterpene with an unprecedented tricyclo[4.3.1.05,9]decane skeleton, from *Eupatorium adenopharum*. The structure of (–)-adenophorone is established with X-ray and spectroscopic analysis. A concise total synthesis is accomplished in nine steps, starting with commercially available (–)-carvone.

Comment: The nine-step synthesis features a sequential Reformatsky/oxidation/regio- and stereo-selective hydrogenation with Crabtree's catalyst. The subsequent MBH–Tsuji–Trost cyclization yields (+)-euptox A, which undergoes a Robinson annulation to give (–)-adenophorone with a high yield. The bioinspired Michael addition further validates the hypothesis that (–)-adenophorone could be biosynthetically generated from cadinene sesquiterpene (+)-euptox A. (–)-Adenophorone also shows potent neuroprotective activity in H₂O₂-treated SH-SY5Y and PC12 cells. The efficient synthetic strategy is expected to provide access to other structurally similar sesquiterpenes in the future.

Category

Innovative Drug Discovery and Development

Key words

neuroprotectant

MBH–Tsuji–Trost cyclization

bioinspired Michael addition

Reformatsky reaction

SYNFACTS Contributors: Dirk Trauner, Xiang Ji Synfacts 2023, 19(09), 0931 Published online: 16.08.2023 **DOI:** 10.1055/s-0042-1751994; **Reg-No.:** T07023SF