
M. RIBÉRAUD, K. PORTE, A. CHEVALIER, L. MADEGARD, A. RACHET, A. DELAUNAY-MOISAN, F. VINCHON, P. THUÉRY, G. CHIAPPETTA, P. A. CHAMPAGNE, G. PIETERS, D. AUDISIO, F. TARAN* (UNIVERSITÉ PARIS SACLAY, GIF-SUR-YVETTE, FRANCE) Fast and Bioorthogonal Release of Isocyanates in Living Cells from Iminosydnones and Cycloalkynes J. Am. Chem. Soc. **2023**, 145, 2219–2229, DOI: 10.1021/jacs.2c09865.

Bioorthogonal "Click-and-Release" of Iminosydnones to Give Water-Stable Isocyanates

Significance: Bioorthogonal click-and-release is one strategy for targeted drug delivery. For this method to be effective, high reaction rates are reguired. Taran and co-workers demonstrate that alkyl and aryl iminosydnones (referring to the substituent on the exocyclic imine nitrogen atom), which were never previously synthesized, have high rates (>100 M⁻¹s⁻¹) of click-and-release with cycloalkynes. This releases alkyl or aryl isocyanates respectively, which can subsequently react with intracellular thiol nucleophiles. The initial [3+2] cycloaddition only occurs in the neutral 1,3-dipole form of the iminosydnone. With pK_a values near neutrality ($pK_a[alkyl] \sim 8.5$, $pK_a[aryl] \sim 6.5$) these iminosydnones offer an inherent mechanism of rate control based on pK_a vs intracellular pH.

Comment: Prior to this work, only iminosydnones with electron-withdrawing substituents on the exocyclic nitrogen atom had been investigated. These have low rates of addition to cycloalkynes. Furthermore, upon click-and-release, the resulting isocyanate would be too electrophilic to be captured by an endogenous nucleophile before undergoing hydrolysis. By developing syntheses of alkyl and aryl iminosydnones, Taran and co-workers have introduced a method for the intracellular delivery of isocyanates that can be captured by biochemical nucleophiles of interest, such as cysteine residues in glutathione or human serum albumin.

Category

Innovative Drug Discovery and Development

Key words

bioorthogonal clickand-release

drug delivery

iminosydnones

isocyanates