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The use of chlorophyll, a green pigment found in plants,

is being recognized as an environmentally friendly method

for synthesizing various heterocycles. It is located in the

chloroplast, a special organelle present only in plant cells.

Chlorophyll plays a crucial role in photosynthesis because

of its extraordinary capacity to absorb light energy. Chloro-

phyll then uses this energy to photolyze water molecules in

order to restore the cells’ reducing power, which is neces-

sary for the process’ following stages to ingest carbon. Re-

cently, the use of chlorophyll as a natural catalyst has been

successfully reported to replace toxic organometallic cata-

lysts such as Ru(II) and Ir(III) polypyridines for various suit-

able transformations. The present article aims to focus on

the efficiency of chlorophyll due to its economical and eco-

friendly approach.

Chlorophyll has gained attention ever since photoin-

duced electron transfer (PET) for the synthesis of various

complex scaffolds in visible-light-driven photoredox cata-

lyzed reactions led to an affordable, adaptable, and environ-

mentally friendly process (Figure 1). Chlorophyll, the most

common natural photocatalyst in our environment, initi-

ates the photosynthesis process, which involves the pro-

duction of carbohydrates during photosynthesis. It has

been shown that there are six different varieties of chloro-

phyll (a–f), with chlorophyll a being the most prevalent va-

riety in nature.1–6

Ru(II) and Ir(III) polypyridines have been frequently em-

ployed as organometallic photocatalysts in organic chemi-

cal transformations, which proved to be incredibly helpful

in synthetic chemistry.7–10 These catalysts are very efficient

at promoting photoinduced electron-transfer processes for

organic transformations, but they have significant limita-

tions because they contain rare earth metals like rutheni-

um (Ru) and iridium (Ir), which are expensive. Tiny

amounts of this expensive, dangerous chemical are present

in the crusts of the earth. Thus, the development of renew-

able photocatalysts is greatly desired.11–15

Chlorophyll has occasionally been utilized to simulate

photosynthesis for photosensitized organic transforma-

tions, despite its capacity to absorb solar energy and trans-

mit it for the conversion of chemical entities into the essen-

tial products.16–18 Chlorophyll acts as a potent reducing

agent due to its half-wave reduction potential of 1.1 V and

its ability to donate an electron to an oxidant to generate a

p-radical cation.19–22

Plants contain chlorophyll, which can function in vari-

ous chemical reactions as a typical natural photocatalyst.

Despite being a widely employed, eco-friendly, and green

photosensitizer, it hasn’t been frequently used in photo-

driven synthesis.23,24 As a result, chlorophyll, which is cred-

ited with having an excellent singlet dioxygen characteris-

tic, has an excellent future and fascinates many scientists

when it comes to the catalysis of organic transformations

via PET to produce compounds that are beneficial for man-

kind. Consequently, it is imperative to investigate this green

photosensitizer’s potential for further organic transforma-

tions. Hence, chlorophyll-based photoelectron excitation

could contribute significantly to the production of the de-

sired chemicals (Table 1).

Figure 1  Chlorophyll a and chlorophyll b
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Table 1  Chlorophyll-Catalyzed Organic Transformations

(A) In 2019, Harsh et al. employed a chlorophyll-sensitized method for the syn-
thesis of 3,4-dihydropyrimidin-2(1H)-ones using multicomponent click chemis-
try. The method involves irradiating the thoroughly stirred mixture of aromatic 
aldehyde, alkyl acetoacetate, and urea in equimolar concentration under concen-
trated solar radiation (CSR) till the completion of the reaction. The same reaction, 
when performed without the use of chlorophyll and in the presence of the radical 
scavenger TEMPO, resulted in a trace amount of product, thereby justifying the 
important role played by chlorophyll in the reaction as well as supporting the rad-
ical mechanism involved in the reaction. The method holds several advantages, 
such as excellent product yield, energy efficiency, simplicity of methodology, sus-
tainability, affordability, and ecology, for the synthesis of functionalized dihydro-
pyrimidinones, which have immense applications. Therefore, photoelectron 
excitation by the use of chlorophyll led to the desired product in excellent yield.25

(B) Another category of reactions involving the use of chlorophyll as a biocatalyst 
via visible light involved the cross-coupling of the C3-position of coumarin with a 
variety of diazonium salts to prepare 3-aryl coumarin derivatives. The approach 
involved the use of chlorophyll as a photosensitizer as well as an economical and 
environmentally friendly biocatalyst. The straightforward procedure involved the 
reaction of coumarin and substituted diazonium salts at room temperature in the 
presence of DMSO under white LED light in the presence of chlorophyll until the 
completion of the reaction. The method holds good versatility as the arylation 
supports tolerance with various electron-donating as well as electron-withdraw-
ing substituents, with the exception of coumarin bearing an electron-withdraw-
ing nitro group. The radical mechanism of the method was supported by the 
complete suppression of the product of the reaction between coumarin and 
phenyldiazonium salt in the presence of (2,2,6,6-tetramethylpiperidin-1-yl)oxi-
danyl (TEMPO).26

(C) The drive for the exploitation of visible light as a sustainable source of energy 
encouraged Heidari and team to work on the synthesis of novel tetrahydroquino-
line derivatives. The approach involved the extraction of chlorophyll b from fresh 
spinach leaves and immobilising them on the surface of TiO2 using 3-aminoprop-
yltriethoxysilane (APTES) as a coupling reagent. The immobilisation of chloro-
phyll b on the surface of TiO2 extended the absorption ability from the ultraviolet 
a region to the visible region and also enhanced its photocatalytic properties. The 
method involved irradiating the glass vial containing N,N-dimethylaniline, 1-phe-
nyl-1H-pyrrole-2,5-dione dissolved in DMF, and a pinch of synthesized chlorophyll 
b modified TiO2 nanoparticles under a 23 W fluorescent lamp at room tempera-
ture for 24 h. The developed method resulted in a highly efficient, economical, 
and eco-friendly approach for the synthesis of tetrahydroquinoline derivatives.27

(D) A series of pyrrolo[2,1-a]isoquinoline derivatives were synthesized by 
Koohgard et al. in 2021 by using chlorophyll a as photocatalyst extracted from 
fresh leaves of spinach. The reaction involved irradiating the mixture of dihydro 
isoquinoline ester (1.2 mmol), maleimide (1 mmol), and a pinch of chlorophyll a 
in toluene as solvent under 15 W LED light at room temperature. The reaction 
was reported to proceed well in the presence of various electron-withdrawing as 
well as electron-donating groups. The plausible mechanism involved the exci-
tation of chlorophyll a as chlorophyll a*, which eventually transfers its energy to 
ground-state molecular oxygen, which subsequently gets converted into singlet 
oxygen. The singlet oxygen then oxidizes N-substituted tetrahydroisoquinoline 
via single-electron transfer (SET), which leads to the formation of radical cations 
and azomethine ylides. Lastly, the generated azomethine ylide undergoes a 
[3+2]-cycloaddition reaction with a suitable dipolarophile, which gets converted 
into a pyrrolidine adduct, followed by an aromatization reaction to finally pro-
duce the corresponding pyrrolo-isoquinoine derivative.28
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The immense importance of chlorophyll in the synthe-

sis of various heterocyclic rings has fascinated organic and

synthetic chemists. Chlorophyll as a natural catalyst not

only speeds up the chemical reaction but also replaces the

use of organometallic catalysts such as Ru(II) and Ir(III)

polypyridine for various suitable transformations. The use

of chlorophyll as a catalyst in chemical synthesis is an effi-

cient green chemistry method due to its advantages, in-

cluding its high efficiency, environmental friendliness, and

economical approach.
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