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Coupling reactions have piqued the curiosity of synthet-

ic chemists since 1940. Since the mid-1990s to the present,

coupling and cross-coupling reactions have been widely

employed in the synthesis of monomers and polymers.1

Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki were

awarded the most prestigious Nobel prize in the preceding

decade for inventing palladium-catalyzed cross-coupling

processes, also known as the Suzuki coupling reaction. Yet,

both metal-catalyzed and nonmetal-catalyzed processes

are employed in both academia and industry.2 There are

several heterocyclic catalysts those are facilitate both cou-

pling and cross-coupling reactions. Among them, hexafluo-

rophosphate azabenzotriazole tetramethyl uronium

(HATU), IUPAC name (N-{(dimethylamino)-1H-1,2,3-triazo-

lo[4,5-b]pyridin-1-ylmethylene}-N-methyl methanamini-

um hexafluorophosphate N-oxide) is used in both small

molecule’s synthesis or peptide synthesis.3–6 Louis A. Carpi-

no discovered a new ester derivative of 1-hydroxy-7-aza-

benzotriazole (HOAt) in 1993, which occurs in two states:

uranium salt and iminium salt. HATU was a third-genera-

tion coupling reagent with the ability to decrease racemiza-

tion. HATU causes amine acylation or the formation of an

amide bond. In addition to nucleophiles, it is employed in

peptide cyclization. HATU catalyzes the nucleophilic addi-

tion process. shown in Scheme 1. In terms of the coupling

reaction, it refers to the coupling of the same fragment,

whereas cross-coupling refers to the coupling of two sepa-

rate fragments. The mechanism of HATU involves the acti-

vation of the carboxylic group through the formation of a

carboxylate anion that attacks HATU to produce O-acyl(te-

tramethyl)isouronium salt, which then proceeds the addi-

tion of the nucleophile, i.e., amines.7–10

Scheme 1  Synthetic mechanism of cross-coupling mediated by HATU
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Table 1  Applications of ZNC

(A) At the end of 2022, Orsi et al. reported a synthetic route of 4-chloro-6-fluo-
ro-sophthalamides.
Synthetic Procedure
The synthesis method began with HATU-mediated cross-coupling of 1 and 2, 
yielding compound 3, followed by C–N coupling to give 4 in the presence of 
diacetoxypalladium (5%), 1,1-bis(diphenylphosphino)ferrocene (DPPF), and tri-
ethylamine, yielding about 5. The final stage employed comparable reagents 
and a cross-coupling procedure to produce the compound.11

(B) In 2021, Kent and his colleagues created, synthesized, and physiologically 
optimized a series of substituted 1,4-thiazepane for mGlu4 PAMs with promis-
ing blood-brain barrier permeability in 2021.12

Synthetic Procedure
Under alcoholic conditions, methyl acrylate 6 reacts with L-cysteine (7) to pro-
duce methyl S-(3-methoxy-3-oxopropyl)-L-cysteinate (8, 88%). Furthermore, 
under ammonia and methanolic conditions, cyclization yielded (R)-5-oxo-1,4-
thiazepane-3-carboxylic acid (9). Finally, the carboxylic group facilitates cross-
coupling with aniline in the presence of HATU for hours in DMF as a solvent, 
providing (R)-5-oxo-N-phenyl-1,4-thiazepane-3-carboxamide (10, 15%).

(C) Selg and colleagues investigated on a series of carborane-capped histone 
deacetylase. Histone deacetylase plays an important function in the reversible 
acetylation of the lysine amino group at the N-terminus of nonhistone pro-
teins; these inhibitors are commonly utilized in cancer, anti-HIV, and other in-
flammatory disorders.
Synthetic Procedure
The solid-phase synthesis technique was constituted of a solid surface provided 
by resin; in this experiment, the 2-chlorotritylchloride resin 11 was used and 
bonded with N-hydroxy phthalimide 12 in the presence of hydrazine and meth-
anol to modify the resin; phthaloyl residue cleavage occurs under alcoholic 
conditions. To obtain 13, HATU enhanced coupling via amide linkage forma-
tion with Fmoc protection at the amine site. Further coupling with HATU and 
DIPEA in an aprotic environment yields compound 14.13
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We have examined recent uses of HATU as a coupling

reagent in the synthesis of small molecules and peptides

through amide linkage (Table 1). Additionally, we observed

the significant role of DIPEA (N,N-diisopropylethylamine)

as a deprotonating agent in HATU-mediated coupling reac-

tions. These applications have clearly demonstrated the po-

tential of HATU in organic synthesis. Furthermore, the in-

troduction of DMAP as a catalyst in the reaction has proven

instrumental in enhancing the coupling process. DMAP aids

in the deprotonation of the amine, increasing its nucleop-

hilicity and facilitating its attack on the activated ester.

Moreover, DMAP contributes to the removal of the byprod-

uct, dimethylamine (DMA), by forming a stable complex

with it, effectively preventing unwanted side reactions.
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