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Abstract Triazole-based compounds possess a broad range of activi-
ty and can be synthesized using click chemistry. Many new chemother-
apeutic agents have been developed in recent years by exploiting click
chemistry and these are covered in this review.

Key words click chemistry, cycloaddition, triazoles, cancer, chemo-
therapy

1 Introduction

Cancer ranks as one of the top causes of mortality glob-

ally and caused around 10 million deaths in 2020 (account-

ing for one of every six deaths).1 Chemotherapy has been an

important part of cancer therapy alongside surgery and ra-

diotherapy and has helped to reduce cancer cases over time

in developed countries like the USA.2 But on a larger scale

there is a constant need to develop newer molecules with

less toxicity and more selectivity to tackle resistance and

improve the effectiveness of the chemotherapy.3 However,

there are a few drawbacks, for example curcumin has low

water solubility, poor absorption, and quick metabolism,

which restrict its therapeutic efficacy.4 According to re-

ports, the separate administration of a chemotherapeutic

agent is still difficult due to clinical limits such as high tox-

icity, the development of multidrug resistance, and other

side effects.5,6 Due to the various pharmacokinetics and

metabolic actions of these medications, it is typically diffi-

cult to mix two or more free agents into a ‘cocktail’ formu-

lation to obtain optimal antitumor activity.7,8 Actually, ef-

fective distribution of two or more chemotherapeutic drugs

through combination therapy has been shown to be a so-

phisticated and effective method for treating a variety of

malignancies.9–12 To the best of our knowledge, the current

dual-drug delivery system has always used the strategies of

physical embedding, noncovalently binding by hydrophobic

interactions, or electrostatic adherence, which would have

some drawbacks, including the premature release of the

drug due to the unstable structure and difficulty con-

trolling and modifying the drug release rate.13

2 Triazole Properties as Pharmacophore

There are many methods for the synthesis of triazole

rings but click chemistry is a rapid, selective, and reliable

method for triazole synthesis.14,15 Since its introduction by

Meldal and Sharpless14,16 click chemistry has been used in

polymers,17,18 materials science,19–24 drug discovery,25–27

bioconjugation,28–32 and organic chemistry.33–38 The most

common reaction in click chemistry is the copper(I)-cata-

lyzed 1,3-dipolar cycloaddition of alkynes and azides to

form 1,2,3-triazoles.39,40 Triazole, a heterocycle41–43 is found

in many natural and synthetic compounds and has a wide

spectrum of use in materials science, protective materials,44

and agriculture.45 Triazoles are also known to be of great

pharmaceutical importance as their derivatives are found to

have anticancer,46 antiproliferative,47 antiviral,48 antimalari-

al,49 antineoplastic,50 anticonvulsant,51 local anesthetic,

anti-inflammatory,52 analgesic,53 and antimicrobial activi-

ties.54–58
© 2023. The Author(s). SynOpen 2023, 7, 186–208
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The significance of the 1,2,3-triazole scaffold in the field

of medicinal chemistry has increased because of some spe-

cial properties, such as tendency to form hydrogen bonds,

dipole-dipole and stacking interactions of triazole com-

pounds, as well as their familiarity to amide bonds regard-

ing distance and planarity.59,60 These properties strongly fa-

vor to bind with the biomolecular targets. This well-known

heterocyclic pharmacophore has the added benefits of im-

proving cell permeability and target binding and is quite re-

sistant to biotransformation.61 It is also capable of contrib-

uting to dipole-dipole interactions and hydrogen bonding.

Synthetic methods based on the click strategy offer effec-

tive routes for the quick and gentle production of bioactive

leads as potential candidates for enzyme inhibitory activi-

ties. Moreover, the triazole motif has the additional bene-

fits of being a suitable linker group because of its outstand-

ing planar stability against metabolism biotransformation,

the aromatic nature of the triazole core, as well as the de-

fined dipole moment and H-bonding formation.62,63 On the

other hand, it has been discovered that combining many

pharmacophores into a single hybrid structure is an effec-

tive method for creating novel molecules with exciting ac-

tivities.64 In the presence of a copper catalyst, the 1,2,3-tri-

azole ring might be joined to a carboxylic group to create a

water-soluble ester.14 Usually, the best option for increasing

the cell permeability of COOH-bearing molecules is esterifi-

cation. Unfortunately, such a straightforward esterification

invariably results in a severe loss of water solubility and

lowers bioavailability for oral administration or injection.

Click chemistry has been exploited largely to synthesize tri-

azole-based molecules and delivery systems, some recent

uses of click chemistry of such importance are discussed in

this review.

3 Click Chemistry in Compound Synthesis

Noodleman, Sharpless, Fokin, and co-workers predicted

two competitive pathways for Cu(I)-catalyzed azide-alkyne

cycloaddition (CuAAC) using DFT calculations in 2005, a

slow process catalyzed by a mononuclear Cu species (Path-

way A) and a more kinetically favored route promoted by

the formation of a dinuclear Cu catalyst (Pathway B). There

is usually a tremendous conflict to confirm by which path-

way the click reaction is taking place (Figure 1).65 By follow-

ing these mechanisms, various researchers have developed

and explained the importance of triazoles in oncology

drugs which are synthesized via click chemistry.

Triazole-based naphthalene-1,4-dione compounds test-

ed for their anticancer activity on MOLT-4, MCF-7, and HT-

29 cells were synthesized via copper-catalyzed click chem-

istry (Scheme 1). Compound 6f (Figure 2) was the most ac-

tive (IC50 value from 6.8–10.4 M) and was more active

than the standard drug cisplatin on HT-29 cells. Amino-

naphthoquinone–1,2,3–triazole hybrids produced some ac-

tivity but the activity was highly influenced by the substit-

uent present in the terminal phenyl ring. The presence of a

strong electron-withdrawing group in the para position of

the ring (4-(trifluoromethyl)benzyl moiety in compound

6f) greatly enhanced its activity.66

Scheme 1  Synthesis of triazole-based naphthalene-1,4-diones66

Figure 2  Structure of triazole-based naphthalene-1,4-dione com-
pound 6f66

Through the use of click chemistry and copper(I) oxide

nanoparticles, melampomagnolide B–triazole conjugates

were produced (Scheme 2) and were then tested for their

anticancer activity on U87, A549, PANC1, HCT116, and

Bel7402 cells. Compound 6e (Figure 3) was most active

with an IC50 value of 0.43 M on HCT116 cells. A copper-

catalyzed click reaction of alkyne and azide produced

melampomagnolide B–triazole conjugates and their activity

was higher than melampomagnolide B (MMB); the antican-

cer activity was increased by the presence of electron with-

Figure 1  Two competitive pathways for the CuAAC-catalyzed click re-
action by a mononuclear Cu species (Pathway A) and by a dinuclear Cu 
catalyst (Pathway B)65
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drawing groups such as nitro- or fluorine. These induced

apoptosis and inhibited proliferation and migration of

HCT116 cells.67

Scheme 2  Synthesis of melampomagnolide B–triazole conjugates67

Figure 3  Structure of melampomagnolide B–triazole conjugate 6e67

1,2,3-Triazole-containing dehydroabietic acids (DHAA),

synthesized using click chemistry (Scheme 3) were tested

for anticancer activity on MCF7, MDA-MB-231, PC-3, and

SKOV-3 cells. Compound 23 (Figure 4) was found to be the

most active (IC50 values ranging from 0.7–1.2 M) with

higher toxicity toward cancer cells than the normal cells.

Modified DHAA compounds with methoxy substitution at

the terminal benzene ring were highly active. The com-

pounds with 3-acetamide and 3-tert-butyl carbamate sub-

stitution at benzene ring were the most active, which con-

firms that the activity was highly dependent on the substi-

tution at the benzene ring.68

Scheme 3  Synthesis of 1,2,3-triazole-containing dehydroabietic ac-
ids68

Figure 4  Structure of 1,2,3-triazole-containing dehydroabietic acid 
compound 2368

1,2,3-Triazole-based thienopyrimidine conjugates con-

taining various sugar moieties were synthesized (Scheme

4) using Cu(I)-catalyzed click chemistry. The compounds

were then tested for their cytotoxic activity on MCF-7 and

HCT-116 cells. Compounds 10 and 12 (Figure 5) were found

to be the most active. Though none of the compounds were

as active as doxorubicin on HCT-116 cells all the com-

pounds were more active than doxorubicin against MCF-7

cells. Compounds 7–12 produced good EGFR inhibition, bet-

ter than the standard drug gefitinib.69
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Scheme 4  Synthesis of sugar-containing 1,2,3-triazole-based thieno-
pyrimidine conjugates69

Figure 5  Structure of sugar-containing 1,2,3-triazole-based thienopy-
rimidine conjugates 10 and 1269

The terminal acetylenic thienopyrimidine derivatives,

which lack the sugar component, were the most effective

molecules. Higher activity was seen in thienopyrimidine

systems based on 1,2,3-triazole glycosides and containing a

linker with four methylene (CH2) groups. Glycosyl-1,2,3-tri-

azole derivatives of the thienopyrimidine system with cy-

clic glucopyranosyl unit, either acetylated or free hydroxyl

moiety, were found to be more effective against the HCT-

116 cell line. In comparison to its gluco- and galactopyrano-

syl counterparts, glycosyl-1,2,3-triazole 12 containing the

xylopyranosyl moiety exhibited significantly stronger cyto-

toxic activity against the MCF-7 cancer cell lines.69

Toradol (Ketorolac) was modified to boost its cell per-

meability and anticancer activity by using click chemistry

to synthesize its 1,2,3-triazolyl ester 3 (Scheme 5). The re-

sulting compound 3 was 500 times more active than the

parent compound (Toradol) with an IC50 value of 24 nM

against PKA1-growth-dependent A549 cells. It inhibited

PKA1 with an IC50 value of 65 nM and COX-2 with an IC50 of

6 nM. The activity of the compound was 5000-fold more

potent on PAK1-growth-dependent B16F10 cells. The per-

meability was boosted 10 times compared to the parent

molecule.70

Curcumin pyrazole derivatives were synthesized using

click chemistry (Scheme 6). These compounds were then

tested for their anticancer potential on UM-SCC-74A and

CAL27 cells and also studied on pAKT, pERK1/2, pFAK, and

pSTAT3 for mechanism determination. Compounds 2 and 5

(Figure 6) were found to be highly active against CAL27 cells

and efficiently inhibited pSTAT3 phosphorylation.71

Scheme 6  Synthesis of curcumin-based derivatives71

N
H

N
NH2

O

SS

1

BrBr
n

K2CO3/DMF
N
H

N
NH2

O

SS Brn

2; n = 2
3; n = 4

NaN3/DMF, rt

N
H

N
NH2

O

SS N3n

4; n = 2
5; n = 4

6a-c/ CuSO4.5H2O
sod. ascorbate

THF/H2O

N
H

N
NH2

O

SS Nn N
N

O
O

AcO

OAc
R1

R2R3

7-12

7-12

07
08
09
10
11
12

n

2
2
2
4
4
4

R1

OAc
H
OAc
OAc
H
OAc

R2

H
OAc
H
H
OAc
H

R3

CH2OAc
CH2OAc
H
CH2OAc
CH2OAc
H

O
O

OAcAcO

R1
R2

R3

6a; R1 = OAc; R2 = H; R3 = CH2OAc
6b; R1 = H; R2 = OAc; R3 = CH2OAc
6c; R1 = OAc; R2 = H; R3 = H

(75%)
(77%)

(75%)
(77%)

yield%

(65%)
(72%)
(71%)
(68%)
(70%)

(75%)

N
H

N
NH2

O

SS
N N

N

O
O

AcO

OAc
OAc
H

CH2OAc

N
H

N
NH2

O

SS
N N

N

O
O

AcO

OAc
OAc

HH

10

12

Scheme 5  Synthesis of the 1,2,3-triazolyl ester of Toradol (Ketorolac)70

N O

OH

O

Ketorolac

Propargyl Alcohol
EDC·HCl, 
DMAP, rt N O

O

O

2

2-Azidoanisole,
sodium ascorbate, 
CuSO4,THF:H2O 

(1:1), rt N O

O

O

3
N
N N

O
(63%) (67%)

O
H3C

HO

O OH

O
H3C

OH
+ R1 NH

NH2

AcOH, Reflux
18 h, 118 °C

O
H3C

HO

N N

O
H3C

OH

R1

1 2-6

R1 N

F
S

N N
N

Cl

N

H3C
F

F
F

2 3 4 5 6

a)

O
H3C

HO

O OH

O
H3C

OH

K2CO3, DMF, 
propargyl 
bromide
48 h, rt

O
H3C

O

O OH

O
H3C

OH

1
7

2,3,4-tri-O-acetyl-
β-D-xylopyranosyl 

azide

Sodium Ascorbate
CuSO4, 60 °C

O
H3C

O

O OH

O
H3C

OH

8
N

N N

OO

OH3C

O

O
H3C

O

O

H3C

Sodium Ascorbate,
CuSO4, 60 °CN

N
N S CH3

O

O
H3C

O

O OH

O
H3C

OHN
N N

S
H3C

O
9

b)
SynOpen 2023, 7, 186–208



191

A. Kumar et al. ReviewSynOpen
Figure 6  Structure of curcumin-based derivative compounds 2 and 571

Sodium azide, aralkyl halides, 4-hydroxycarbazole,

malononitrile, and N-propargyl isatins reacted in the pres-

ence of Cell-CuI NPs (cellulose-supported CuI-nanoparti-

cles) to form 1,2,3-triazole-tethered spirochromenocarba-

zoles in a one-pot synthesis reaction (Scheme 7). The syn-

thesized compounds were tested for their anticancer

activity on THP-1, A-549, PANC-1, HeLa, MDA-MB-231, and

MCF-7. Many compounds produced good anticancer activi-

ty against HeLa, MCF-7, and MDA-MB-231 cells (IC50 value <

10 M). Compound 6f (Figure 7) (IC50 = 2.13 M) was most

active on MCF-7 cells, compound 6k (Figure 7) (IC50 = 3.78

M) on MDA-MB-231, and compound 6u (Figure 7) (IC50 =

3.5 M) on HeLa cells. All the compounds were nontoxic to

HUVACs and induced cell death by apoptosis. N-Propargyl

isatin and 5-bromo-N-propargyl isatin are the sources of

most active molecules, although the substitution of chloro,

fluoro, or methyl group on N-propargyl isatin has little im-

pact on the anticancer activity. Benzyl bromides possessing

electron-withdrawing groups were shown to be more po-

tent than other compounds.72

Figure 7  Structure of 1,2,3-triazole-tethered spirochromenocarba-
zoles compounds 6f, 6k, and 6u72

4-Amidopodophyllotoxin conjugates containing tri-

azoles were synthesized exploiting click chemistry (Scheme

8) and tested for anticancer activity on MCF-7, HT29, B16,

and HeLa cells. No compound was as active as the standard

drugs etoposide and podophyllotoxin on B16 cells, com-

pound 5j (Figure 8) was most active on the remaining three

cell lines (IC50 = 0.07 M on HeLa cells, 0.1 M on HT29, and

0.91 M on MCF-7 cells) and was more active than both the

standard drugs. The compounds increased the caspase-3

levels, arrested the cell cycle in the G2/M phase, and pro-

duced apoptosis. The compounds produced good tubulin

inhibition in the in vitro studies and bound to colchicine

site in the in silico studies. It was clear from the in vitro

studies that in triazolo-linked podophyllotoxins, the com-

pound containing triazole ring substituted with 4-bro-

mophenyl 5j was most active. It was clear from the molecu-

lar docking studies that oxygen and nitrogen from the am-

ide and the bromine-substituted phenyl ring established

hydrogen bonds with tubulin. -Stacking was observed in
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the case of the triazole ring, the phenyl ring with trime-

thoxy substituents, and phenyl rings with bromine substit-

uents.73

Scheme 8  Synthesis of triazole-containing 4-amidopodophyllotoxin 
conjugates73

Figure 8  Structure of triazole-containing 4-amidopodophyllotoxin 
conjugate 5j73

Triazole-containing analogues of DDO-6101 (3), a caged

xanthone, were prepared by click chemistry (Scheme 9) to

improve the anticancer activity in in vivo studies and the

druglike properties were tested for their anticancer activi-

ties on U2OS, HCT116, HepG2, and A549 cells.74 There was

no reduction in the cytotoxicity and the compounds were

even active against cisplatin and taxol-resistant A549 cells.

Compound DDO-6318 (8g) (Figure 9) with the best anti-

cancer activity in most of the cases and good druglike prop-

erties was considered for in vivo studies and turned out to

be much more potent than the original DDO-6101 (3). The

cytotoxic action of xanthones may be increased by adding a

triazole moiety with nitrogen-containing hydrophilic

groups, particularly morpholino and 4-methylpiperizin-1-

yl groups, but the length of the alkyl chain imposed no sig-

nificant change in the activity.74

Figure 9  Structure of a triazole-containing analogue of DDO-6101, 
compound 8g (DDO-6318)74

1,2,3-Triazole-containing pyrrolobenzodiazepines 1 and

2 synthesized via click chemistry using microwave irradia-

tion and catalysis by Cu(I) (Scheme 10) were tested for per-

cent growth inhibition at 10–5 M concentration on various

cancer cell lines. Most compounds produced moderate ac-

tivity, compound 1c (Figure 10) produced the highest per-

cent inhibition of 43.45% at the concentration of 10–5 M.

Two sets of pyrrolobenzodiazepine-triazole derivatives 1

and 2 were synthesized, the former containing simple sub-

stituted phenyl attached to triazole and latter containing a

2-oxo-2-(substituted phenylamino)ethyl. Compound 1c

was most active on SNB-75, suggesting that the compound

containing a simple 2-chlorophenyl substituent on triazole

ring produced best activity against SNB-75.75
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Figure 10  Structure of 1,2,3-triazole-containing pyrrolobenzodiaze-
pine compound 1c75

Triazole derivatives of D-(+)-pinitol with substitutions

at N1 and C4 of the triazole were synthesized by a copper(I)

catalysis (Scheme 11) and were tested for anticancer activi-

ty on Mia-Paca-2, HCT116, and HL-60 cells. Compound 7

(Figure 11) was the most active on Mia-Paca-2 (IC50 value

16.4 M), compound 3 (Figure 11) on HCT116 (IC50 value

17.5 M), and compound 2 (Figure 11) on HL-60 (IC50 value

19.2 M) cells. Methyl, nitro, and bromo groups on the phe-

nyl ring at N1 of the imidazole produced better cytotoxic

agents.76

N-((1-((1H-Benzo[d]imidazol-2-yl)methyl)-1H-1,2,3-

triazol-4-yl)methyl)aniline derivatives 7 were synthesized

by click chemistry in a one-pot synthesis (Scheme 12) and

were then tested for their anticancer activity on NCI-60

cells. Compound 7e (Figure 12) with 70% growth inhibition

of UO-31 cells at a concentration of 10 M was most ac-

tive.77

Figure 12  Structure of compound 7e77

The synthesis of triazole-benzimidazole-chalcones 10

and 11 was performed using click chemistry (Scheme 13)

and the compounds were tested for anticancer activity with

PC3, MDA-MB-231, and T47-D cells. Though no compound

was as active as doxorubicin (the standard drug), compound

10d (Figure 13) with IC50 values of 5.89 M and 6.23 M

was most active on MDA-MB-231 and T47-D, respectively.

Compound 10h (Figure 13) with an IC50 value of 5.64 M

was most active on PC3 cells. More activity was produced

by the benzyl-linked 1,2,3-triazole group.78

Scheme 10  Synthesis of 1,2,3-triazole-containing pyrrolobenzodiaze-
pines75
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Scheme 13  Synthesis of triazole-benzimidazole-chalcones78

Figure 13  Structure of triazole-benzimidazole-chalcones 10d and 
10h78

1,2-Isoxazole-xanthenedione 12, 1,2-isoxazole-acrid-

inedione 11, 1,2,3-triazole-xanthenedione 10, and 1,2,3-tri-

azole-acridinedione hybrids 9 synthesized via click chemis-

try (Scheme 14) were tested for anticancer activity on PC3,

MDA-MB-231, and T47-D cells. Though none of the com-

pounds was as active as the standard drug doxorubicin,

compound 10c (IC50 of 10.20 M, 20.88 M and 14.50 M

on PC3, MDA-MB-231, and T47-D cells, respectively) was

most active among all the synthesized compounds. By add-

ing 1,2-isoxazole to the acridine scaffold, cytotoxicity in

metastatic cancer could be boosted in 1,2-isoxazole/1,2,3-

triazole-xanthenedione/acridinediones. Among the most

active hybrids O-1,2,3-triazole-xanthenediones containing

unsubstituted aromatic rings were most cytotoxic. The

1,2,3-triazole’s orthogonal position at the xanthenedione

scaffold promotes cytotoxicity in PC3. Conjugation and po-

sition of the isoxazole moiety at the acridinedione scaffold

Scheme 12  (a) Synthesis of N-((1-((1H-benzo[d]imidazol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)aniline and 2-((4-phenyl-1H-1,2,3-triazol-1-
yl)methyl)-1H-benzo[d]imidazole derivatives; (b) synthesis of 1-ethyl-2-((4-(4-fluorophenyl)-1H-1,2,3-triazol-1-yl)methyl)-1H-benzo[d]imidazole77
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are in favor of an increased cytotoxicity. Compounds shar-

ing acridine/xanthene have resulted in promising antipro-

liferative activity against a panel of tested cancer cells. Acri-

dine-1,2,4-triazole compounds with different substitutions

at the para position of the phenyl ring exhibited the most

potent anticancer activity against MCF-7, HT-29, A-549,

and A-375. Acridine-thiophene hybrids show selectivity to-

ward HCT-116 cells.79

Scheme 14  Synthesis of 1,2-isoxazole-xanthenedione/acridinedione 
and 1,2,3-triazole-xanthenedione/acridinedione hybrids79

Ludartin 1,4-disubstituted-1,2,3-triazoles 3 were syn-

thesized using click chemistry (Scheme 15) and tested for

anticancer activity on MCF-7, HCT-116, PC-3, A-549, and

T98G cells. Though compound 3q (Figure 14) with 3,4-di-

methyl substitution was highly active among the synthe-

sized compounds, it was not as active as the parent ludar-

tin.80

Figure 14  Structure of ludartin 1,4-disubstituted-1,2,3-triazole com-
pound 3q80

Scheme 15  Synthesis of ludartin 1,4-disubstituted-1,2,3-triazoles80

6-(4-((Substituted-1H-1,2,3-triazol-4-yl)methyl)piper-

azin-1-yl)phenanthridines were synthesized 7 (Scheme 16)

using Cu(I)-catalyzed click chemistry and tested for anti-

cancer activity on HL60, U937, COLO205, and THP1 cells.

Among the synthesized compounds, 7g (Figure 15) (IC50 =

9.73 M) was most active on THP1 cells but was not as ac-

tive as the standard drug etoposide. Compound 7h (Figure

15) was highly active on HL60 cells (IC50 = 7.22 M) and was

more active than the standard drug.81

Figure 15  Structures of 6-(4-((substituted-1H-1,2,3-triazol-4-yl)meth-
yl)piperazin-1-yl)phenanthridine compound 7g and 7h81

Osthol-based triazole compounds 3–22 were synthe-

sized where the open lactone ring was exploited for the ad-

dition of a triazole via click chemistry (Scheme 17). The

synthesized compounds proved to be more active than ost-

hol on A-431, PC-3, A549, NCI-H322, T47D, HCT-116, and

colo-205 cells. Compound 8 (Figure 16) was most active

against A-431, T47D, HCT-116, and Colo-205 cells with IC50

values of 7.2 M, 3.6 M, 4.9 M, and 1.3 M, respectively,

more active than the standard drug against T47D and A-431

cells, but not as active in case of Colo-205 and HCT-116.

Compound 11 (Figure 16) was most active on PC3 cells with

an IC50 value of 14.2 M and compound 20 (Figure 16) on

NCI-H322 cells (IC50 value 14.4 M) but they were not as ac-

tive as the standard drug BEZ-235. Compound 14 (Figure

16) (IC50 = 2.2 M) was most active on A549 cells and its ac-

tivity was better than the standard drug.82
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Scheme 17  Synthesis of osthol-based triazole compounds82

Figure 16  Structure of osthol-based triazole compounds 8, 11, 14, and 
2082

Dihydroartemisinin-coumarin hybrids 10–13 (Scheme

18), synthesized using click chemistry, were tested for their

anticancer activity on HT-29, MDA-MB-231, and HCT-116

cells under anoxic and normoxic conditions. The hybrids

produced moderate activity with IC50 value from 0.05 to

125.40 M. The compounds were more active on HT-29

cells in anoxic conditions. The cytotoxicity in most of the

compounds was found to be greater in anoxic conditions

than in normoxic. Compounds 10a–e were more active on

HT-29 cells.83

Pyrazolyl–chalcone hybrids were synthesized using tri-

azole click chemistry (Scheme 19) and were then tested for

their anticancer activity on A-549, COLO-205, and THP

cells. Compound JGPT-6 and JGPT-11 (Figure 17) were

found to be very active with JGPT-6 being most active on

COLO-205 cells (99% inhibition at 100 M) whereas com-

pound JGPT-11 was most active on THP and A-549 cells

with 95% A-549 inhibition at a concentration of 100 M and

79% of THP at the same concentration. Cytotoxicity is no-

ticeably reduced when deactivating groups like Br and Cl

are present. The methoxy groups significantly increased cy-

totoxicity.84

Figure 17  Structure of pyrazolyl–chalcone hybrids JGPT-6 and JGPT-
1184

Scheme 16  Synthesis of 6-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl)phenanthridines81
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Scheme 18  Synthesis of dihydroartemisinin–coumarin hybrids83
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Scheme 19  Synthesis of pyrazolyl–chalcone hybrids84
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Triazole-mansonone E derivatives 12 with halogen sub-

stitution at C-9 were synthesized by click chemistry

(Scheme 20). The derivatives produced potent topoisomer-

ase inhibition (both in Topo I and Topo II). The compounds

were also tested for their activity on HeLa, K562, HL-60,

and A549 cells. None of the compounds were as active as

the standard drug etoposide on HL-60 cells, but many com-

pounds were more active than etoposide on HeLa, K562,

and A549 cells. Compound 12a-10 (Figure 18) (IC50 = 11.38

M) was most active on A549 cells whereas compound

12b-9 (Figure 18) on K562 and 12b-11 (Figure 18) on HeLa

with IC50 values of 2.82 M and 7.72 M, respectively. These

compounds (12a-10, 12b-9, and 12b-11) (Figure 18) were

more active than the standard except for compound 12b-9

(Figure 18) with an IC50 value of 1.49 M on HL-60 cells. The

anticancer efficacy of triazole-mansonone E derivatives was

impacted by a variety of situations. The first is the C-9 sub-

stituent, where bromo was more efficient than chloro. In

comparison to cyclopropyl, carboxylic acid ethyl ester, and

carboxylic acid methyl ester, aromatic substituents have

better activity when present on triazoles. Longer alkyl

chains boosted activity, while alkyl substituents at position

4 of the phenyl ring provided better activity.85

Triazole-based isosteviol compounds 12 and 13 were

synthesized using click chemistry (Scheme 21) and were

tested on HeLa, HCT116, PC-3, MDA231, ASPC-1, A549, HL-

60, and MOLT-4 cells for their anticancer activity. Com-

pound 12a (Scheme 21) was most active on all cell lines ex-

cept HeLa cells with IC50 values ranging from 4.79–28.8 M.

Compound 12a produced the lowest IC50 for ASPC-1 and

which was 4.79 M. Compound 12b (Scheme 21) was high-

ly active on HeLa cells (IC50 = 5.83 M) and was highly spe-

cific for HeLa, MOLT-4, and HCT116 cells. In the case of tri-

azole-based isosteviol the linker between the triazole and

benzene ring was an important factor in the cytotoxic ac-

tivity of the isosteviol carboxylic group modified conju-

gates. The aliphatic linker between the triazole and ben-

zene rings with a polar methoxycarbonyl group decreased

activity. When the polarity of the triazole-containing moi-

ety increases, the anticancer activity of isosteviol conju-

gates decreases noticeably. Moreover, the capacity of isoste-

viol conjugates to inhibit the growth of cancer cells depends

on the triazole moiety’s hydrophobicity.86

Scheme 20  Synthesis of triazole–mansonone E derivatives85
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Scheme 21  Synthesis of triazole-based isosteviol compounds86
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Triazole-based compounds were synthesized using

azide-alkyne click chemistry (Scheme 22) as potential

HDAC inhibitors and were tested for their activity on HDAC

isozymes and HDAC3. Compounds T247 and T326 (Scheme

22b) exhibited selective and potent HDAC3 inhibition. The

anticancer activity on PC3 and HCT116 cells showed that

the compound T326 with a GI50 value of 0.94 M on

HCT116 and 1 M was the most active.87

4-(1,2,3-Triazol-1-yl)podophyllotoxin-based carba-

mates were synthesized (Scheme 23) and tested on HCT-8,

HeLa, A-549, and HL-60 cells for anticancer activity. Few

compounds were more active than the standard drug

etoposide. Compound 16 (Figure 19) was most active with

IC50 values of 0.01 M to 0.51 M against all the cell lines.

The compounds acted by blocking the formation of micro-

tubules by inhibiting DNA topoisomerase-II.88

Indoles linked via an alkyl-substituted triazole to N-hy-

droxyarylamides were synthesized (Scheme 24) and tested

on MCF-7, HepG2, K562, HCT-116, and Lovo cells for their

anticancer activity with SAHA as standard drug. Though

most compounds produced good activity, compound 8n

(Figure 20) was most active with IC50 values (ranging from

3.57–6.21 M), better than the standard drug SAHA for all

the cell lines. The compounds were also tested for HDAC in-

hibitory activity. Compound 8n produced excellent HDAC

inhibition and was highly selective and potent toward

HDAC1.89

Scheme 23  Synthesis of carbamate derivatives of 4-(1,2,3-triazol-1-yl)podophyllotoxin88
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Scheme 24  Synthesis of indole-linked N-hydroxyarylamide deriva-
tives89

Figure 20  Structure of indole-linked N-hydroxyarylamide compound 
8n89

Taxoid, SB-T-1214 folate conjugate 13 (Scheme 25) was

synthesized using copper-free click chemistry (Scheme 25)

and the compound was then tested on WI-38(FR-), L1210-

FR(FR++), MX-1(FR++), and ID8 (FR+++) for their FR selective

anticancer activity with paclitaxel as the standard drug.

Compound 13 produced FR-specific cytotoxicity with IC50

values from 2.1–3.5 nM and was nontoxic toward normal

cells at a dose of 5000 nM.90
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Coronopilin derivatives containing 1,2,3-triazoles were

synthesized using click chemistry (Scheme 26) and were

tested on MCF-7, A-549, HeLa, HCT-15, THP-1, and PC-3

cells for their anticancer activity. Most compounds pro-

duced good activity but compound 3a (Figure 21), in partic-

ular, was the most active (IC50 ranging from 3.1–9.7 for all

cell lines) among the synthesized compounds. The com-

pound 3a induced apoptosis in the G1 phase and was stud-

ied for NF-B (p65) transcription factor inhibition and was

found to produce 80% inhibition at 100 M after 24 h. The

type of connecting heteroatom between the triazole and

the variable group determined the activity of 1,2,3-triazole-

modified coronopilins. When the heteroatom was oxygen,

the activity increased, and when it was nitrogen, it de-

creased. When halide-substituted phenyl rings were con-

nected to the triazole ring via oxygen, the activity was at its

peak.91

Scheme 26  Synthesis of coronopilin derivatives containing 1,2,3-tri-
azoles91

Figure 21  Structure of coronopilin derivative 3a91

Synthesis of triazole- 15–26 and isoxazole-based 6-hy-

droxycoumarins 3–14 was performed using click chemistry

(Scheme 27) and tested for anticancer activity on A-549,

Colo-205, HCT-116, HL-60, and PC-3 cells. Though none of

the compounds were as active as standard drug BEZ-235

except compound 10 on PC3 cells, some compounds were

more active than 6-hydroxycoumarin. Isoxazole derivatives

10 and 13 (Figure 22) with IC50 values 8.2 and 13.6 M, re-

spectively, were most active on PC-3 cells and triazole de-

rivatives 23 and 25 (Figure 22) with IC50 values 10.2 and

12.6 M were most active on A-549 cells. Isoxazole deriva-

tives with ortho substitution in the phenyl R group were ef-

fective cytotoxic agents against PC-3 cells, whilst triazoles

with ortho substitution in the phenyl R′ were more effective

against A-549 cells. It was also observed that nitro (NO2)

and cyano (CN) groups in the ortho position play an import-

ant role in achieving higher selectivity and activity.92

Scheme 27  Synthesis of triazole-and isoxazole-based 6-hydroxycou-
marins92

Figure 22  Structure of triazole- and isoxazole-based 6-hydroxycouma-
rins 10, 13, 23, and 2592

Cinchona alkaloids and monensin (MON) or salinomy-

cin (SAL) conjugates were prepared using copper-catalyzed

click chemistry (Scheme 28) and tested on HepG2, LoVo/Dx,

and LoVo cells along with the normal cells (BALB/3T3) for

their cytotoxic potential. None of the conjugates were as ac-

tive as the parent compounds MON and SAL, but some of

them produced less toxicity toward normal cells in compar-

ison to doxorubicin and cisplatin.93

Triazole-based 4′-demethyl-epipodophyllotoxin and

podophyllotoxin derivatives were synthesized using click

chemistry (Scheme 29) and tested for their anticancer ac-

tivity on A-549, COLO-205, PANC-1, and PC-3 cells. Some

compounds produced better activity than the podophyllo-

toxin and compound 3k (Figure 23) was most active (IC50

values 3.8–22 nM for all cell lines). The compound strongly

stopped the motility of PC-3 cells.94
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Figure 23  Structure of podophyllotoxin derivative 3k94

4 Click Chemistry in Drug Delivery

Several chronic diseases, such as cancer, diabetes, and

drug addiction, are treated and maybe cured in a significant

way due to drug transportation. Yet, it might be challenging

to meet the fundamental requirements and risk harming

the way that medications work therapeutically because of

their limited controllability and rapid release. Drugs are

typically administered in strong doses at specific times. Lee

and co-workers described the formation of hydrogels (TGs)

containing triazoles that gradually expand when exposed to

water. It was shown that hydrophobic aggregations, mostly

brought on by stacking between triazole rings, are respon-

sible for the time-dependent growth of the swelling (Figure

24). The hydrophobic region of this structure was gradually

penetrated by water molecules, allowing a hydrogen bond

to form between the water and one of the nitrogen atoms

on the triazole ring.18 This group has also described that the

existence of ureido moieties, the chain length of the side

groups, and the degree of quaternization (DQ) on the tri-

azole ring were all key factors in the design of each poly-

mer’s upper critical solution temperature (UCST) in aque-

ous solution. To further regulate the UCSTs, methyl iodide

quaternization processes were carried out on the triazole

rings of each polymer. Findings demonstrated that the de-

gree of quaternization might be used to accurately tailor the

UCST.17

Scheme 28  Synthesis of cinchona alkaloids and monensin or salinomy-
cin conjugates93
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Figure 24  Triazole-containing hydrogels for time-dependent sustained drug release via stacking interaction between triazole rings18

Even though there are numerous effective nanocarriers

for drug delivery, the US Food and Drug Administration

(FDA) has only approved a small number of them for use in

clinic therapy.95,96 Because nanomedicines are difficult for

cells to internalize in the majority of drug delivery systems,

they have less of an impact on cancer cells.97 Essentially, a

micelle-based drug delivery system should easily pass

through the cell membrane barriers of cancer cells and

cause conjugated pharmaceuticals to leak inside the cells.

According to a report, the electrostatic force easily causes

positively charged micelles to adhere to the surfaces of neg-

atively charged cell membranes, improving cellular inter-

nalization.98

Each targeted drug delivery system aims to create a

framework for the nanodelivery formulations that will ad-

dress the issues raised thus far by setting up a reagent-free

click chemistry procedure. Currently, some observers be-

lieve that click chemistry is a meticulously planned strategy

for creating novel molecular delivery systems. This innova-

tive yet straightforward method relies mostly on the forma-

tion of carbon–heteroatom bonds using ‘spring-loaded’ re-

actants. The safety of the resulting carrier system is crucial

to the success of the formulation. Additionally, particle sizes

less than 300 nm serve to minimize opsonization of the

proteins by macrophages in the body, which leads to pre-

mature removal of the formulation from the targeted tumor

location. Hypoxia is a target that is prevalent in virtually all

cancers and is usually located in the oxygen-deprived core

of the tumor. Because of its position, it is difficult to target.

However, the fast-growing cancer cells cause a shortage of

oxygen and a drop in pH, resulting in the upregulation of

the surface receptor CA IX. This is a useful cancer cell mark-

er that helps the nanocarrier to penetrate to the core and so

efficiently deliver the medicine to the targeted spot.

To overcome this, HAS-PTX (human serum albumin)

carrying PTX (paclitaxel) was designed (Scheme 30) by Iyer,

Sau, and co-workers for targeting CA IX (carbonic anhy-

drase) receptor for improving drug delivery to TNBC (triple

negative breast cancer). ATZ (acetazolamide), a CA IX li-

gand, was used for the selective delivery of PTX. A new cop-

per-free ‘click’ chemistry SPAAC (Strain-Promoted Alkyne

Azide Cycloaddition) was used to combine azide and the

DBCO (dibenzocyclooctyl) moiety. PTX was loaded using

the desolvation method to form HSA-PTX-ATZ. The antican-

cer activity of the carriers was tested on MDA-MB-468 and

MDA-MB-231. HSA-PTX-ATZ produced better anticancer

activity than HSA-PTX, PTX, and HSA alone. Their findings

of increased cell killing effects of HSA-PTX-ATZ in hypoxia

compared to normoxia and higher absorption of

rhodamine-labeled HSA-PTX-ATZ indicates that HSA-PTX-

ATZ has a CA IX-mediated drug delivery impact.99

DOX (doxorubicin)-prodrug (pH-sensitive), 6MP(6–

mercaptopurine)-prodrug were joined on to PDPAO [po-

ly(DEA)-b-poly(ABMA-co-OEGMA), synthesized by RAFT

(reversible addition-fragmentation chain transfer) polym-

erization43,102,103], by click chemistry (Scheme 31) to form

PDPAO@imine-DOX/cis-6MP which further self-aggregated

to polymeric M(DOX/6MP) micelles. These micelles pro-

duced pH-sensitive DOX release. These micelles cells

showed enhanced cellular uptake and cytotoxic activity on
SynOpen 2023, 7, 186–208
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HL-60 and HeLa cells. The cytotoxicity was adjustable with

alterations in DOX and 6MP ratio. Higher cytotoxicity at 2:1

(DOX:6MP) was exhibited by the micelles. Because DOX and

6MP were conjugated to PDPAO via a ‘click chemistry’ pro-

cess including an acid-labile imine bond and a Michael ac-

ceptor structure, endosomal/lysosomal pH-triggered DOX

release and intracellular GSH-triggered 6MP release should

be seen. Virtually all CI values against HL-60 cells were

much lower than those against HeLa cells, showing that the

combination techniques had a greater synergistic impact on

HL-60 cells than on HeLa cells. This finding might be as-

cribed to intermolecular entanglement between DOX and

6MP, which slowed diffusion from the hydrophobic core

area to the surface of micelles despite the fact that imine

bond cleavage and Michael receptor addition were promot-

ed in the intracellular microenvironment (pH 5.0 + GSH 10

mM). The current work proposes a synthesis technique for

DOX and 6MP co-delivery on a polymeric platform that

might enable both charge-conversion and successful com-

bination treatment.100

PAMAM (polyamidoamine) based CTP (camptothecin)

prodrug was synthesized (Scheme 32) using click chemis-

try. CTP was functionalized onto APO (1-azido-3,6,9,12,15-

pentaoxaoctadecan-18-oic acid). Methoxypoly(ethylene

glycol) amine and PPA (propargylamine) were conjugated to

PAMAM dendrimer G4.5 using DMTMM (4-(4,6-dime-

thoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride).

Finally, CTP-APO was coupled to the PEGylated PAMAM

dendrimer (G4.5-PPA). The prodrug was tested for its anti-

Scheme 30  Synthesis of HAS-PTX-ATZ99
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cancer potential on U1242 cell line and was found to have

185 times increase in activity (IC50 = 5 M) relative to free

CTP due to delayed release. The expanded usability of the

click chemistry based coupling technique would allow for

the production of large-scale high-quality polymer-drug-li-

gand conjugates with uniform ligand and drug loading on

the dendrimer.101

5 Future Perspectives and Challenges

Click chemistry is a powerful tool for lead discovery and

exploits combinatorial chemistry. As the triazole forming

process is very reliable, fast, and leads to a near-perfect re-

action it accelerates the process of lead optimization and

lead finding.104

Copper-catalyzed reactions work well for alkyl or aryl

azides, but electron-deficient azides do not respond well to

this reaction. Also, the reactions only yield 1,4-disubstitut-

ed 1,2,3-triazoles and trisubstitution always remains chal-

lenging. Though there have been modified versions of this

reaction to get 1,4,5-trisubstitution in triazoles. Copper-

free methods have also been exploited but they have their

challenges.105–109

6 Conclusion

Triazoles make up a variety of molecules and cover a

wide spectrum of activity. In recent years triazole-based

cycloadditions have been used in the development of new

chemotherapeutic agents. Both copper-based and copper-

free click chemistry reactions have been employed in the

development of drug carriers like dendrimers and have also

been used as a method to develop new anticancer mole-

cules with some molecules producing excellent anticancer

activities. The method has also been used to modify various

natural products to develop better active compounds.

Azide-alkyne click chemistry is still a reliable method to de-

velop new molecules and could lead to the formation of a

new molecule with excellent anticancer activity.
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