123-Iodine MIBG in the Assessment of Sympathetic Denervation in Ogilvie’s Syndrome

Amit Bhoil1 Sobhan Vinjamuri1

1 Department of Nuclear Medicine, The Royal Liverpool University Hospital NHS Trust, Liverpool, United Kingdom

Abstract

Keywords
- 123-Iodine metaiodobenzylguanidine (I-123 MIBG) imaging is frequently used in the assessment of sympathetic innervation and autonomic dysfunction in patients with cardiac failure, neurodegenerative Parkinson’s syndrome, multiple system atrophy, myotonic dystrophy, and diabetic mellitus. The etiology of pseudo-obstruction remains unknown with likely imbalance between sympathetic and parasympathetic innervation proposed as a hypothesis. We present a case demonstrating the utility of I-123 MIBG scintigraphy for evaluating a case of pseudo-obstruction requiring frequent hospitalization due to progressive complex autoimmune neurological disorder.

Case Report

A 48-year-old female presented with a complex history of chronic back pain with frequent episodes of hospitalization due to pseudo-obstruction with history of dysautonomia for the last 2 years. The contrast-enhanced computed tomography (CECT) scan in the axial (Fig. 1A), coronal (Fig. 1B), and sagittal plane (Fig. 1C) showed nonspecific large bowel dilatation proximal to the short segment narrowing in the distal sigmoid colon, with no feature of true obstruction. Colonic transit capsule study was normal with no transit delay. The patient progressively had swallowing difficulty, which on video fluoroscopy study was diagnosed with pharyngeal and esophageal phase dysphasia. She later developed unexplained spastic paraplegia with sustained clonus and autonomic pain over time period. The patient had a family history with mother having similar neurological disorder, hence genomic testing was considered. The hereditary spastic paraparesis genomic test for 129 gene and autoimmune autonomic ganglionopathy was negative. The plasma concentration of norepinephrine was within normal limits. Patient was suspected with poorly characterized syndrome of autonomic failure and considered for cardiac 123-Iodine metaiodobenzylguanidine (I-123 MIBG) scan for the assessment of the autonomic dysfunction. The cardiac I-123 MIBG scan showed reduced myocardial uptake in the early (15 minutes) (Fig. 2A) and delayed (4 hours) (Fig. 2B) images, with the quantification of heart and mediastinal (H/M) ratio at early time point of 15 minutes 1.58 (control: 2.81) and at delayed time point of 4 hours 1.54 (control: 3.04). The findings were suggestive of cardiac sympathetic denervation. The findings supported the diagnosis of progressive autoimmune autonomic neuropathy and hereditary spastic paraparesis with gastrointestinal and cardiac dysfunction. The patient was symptomatically treated, with nasojejunal feeding and cold octreotide therapy.

Discussion

Ogilvie’s syndrome, or acute colonic pseudo-obstruction (ACPO), is a rare multifactorial disorder that consists of
dilatation of part or all of the colon and rectum. The pathophysiology of ACPO is incompletely understood with an imbalance of sympathetic and parasympathetic innervations, being the most widely-postulated theory. However, recently sacral parasympathetic denervation causing atonic distal colonic segment similar to adynamic ileus is suspected as the likely postulated cause.2,3

The parasympathetic nerve endings release acetylcholine, activating the muscarinic receptors stimulating the plexus activity of entire nervous system, leading to stimulation of distal colonic segment similar to adynamic ileus.

\textbf{Fig. 1} Contrast-enhanced computed tomography (CECT) scan in the (A) axial, (B) coronal, and (C) sagittal planes shows narrowing in the distal sigmoid colon with nonspecific proximal large bowel dilatation.

\textbf{Fig. 2} The cardiac 123I MIBG scan with the quantification of heart and mediastinal (H/M) ratio at the early time point of 15 minutes and at the delayed time point of 4 hours showed a reduced (H/M) ratio (A) at the early time point of 1.58 (control: 2.81) and (B) at the delayed time point 1.54 (control: 3.04).
bowel movements, gastrointestinal secretion, and blood flow. However, the sympathetic nerve endings release nor-
epinephrine, which inhibits both the plexus of the enteric nerv-
ous system through activation of the α1, α2, and β
adrenergic receptors. The effects of sympathetic nervous
system are further augmented by a presynaptic norepineph-
rine-mediated inhibition of release of parasympathetic
acetylcholine.4

I-123 MIBG as a radionuclide tracer is an analogue of
norepinephrine, and concentrated in adrenergic neurons in
the presynaptic vesicles, the concentration reflects scinti-
graphic display of the adrenergic nervous system. The change in concentration of myocardial sympathetic innerva-
tion reflects neuronal integrity and functions.5,6 The auto-
nomic nervous system abnormalities may be regional, with
the adrenergic nerves of the heart particularly vulnerable to
the effect of this disease.6 The scintigraphic display of the
adrenergic nervous system with the late H/M ratio is an
index of relative distribution of sympathetic nerve terminal
offering information about neuronal integrity and function.7
I-123 MIBG has been reported to provide information re-
garding cardiac sympathetic function in heart disease, Par-
kinson’s disease, myotonic dystrophy, multiple system
atrophy, diabetes mellitus, and Chagas heart disease.5,8–10

Conclusion
This case demonstrates the potential use of I-123 MIBG
scintigraphy for the assessment of the autonomic function
of sympathetic denervation with correlation with MIBG
uptake in clinical condition as progressive degenerative
autoimmune autonomic neuropathy.

Note
The manuscript has been read and approved by the author
that the requirements for authorship as stated earlier in
this document have been met, and that author believes
that the manuscript represents honest work, if that
information is not provided in another form.

Funding
None.

Conflict of Interest
None declared.

Reference
1 Chung EJ, Lee WY, Yoon WT, Kim BJ, Lee GH. MIBG scintigraphy for
differentiating Parkinson’s disease with autonomic dysfunction
from Parkinsonism-predominant multiple system atrophy. Mov
Disord 2009;24(11):1650–1655
2 Harnsberger CR. Acute colonic pseudo-obstruction (Ogilvie’s
3 Wells CI, O’Grady G, Bissett IP. Acute colonic pseudo-obstruction:
a systematic review of aetiology and mechanisms. World J Gastro-
enterol 2017;23(30):5634–5644
4 Osinga TE, Kerstens MN, van der Klauw MM, et al. Intestinal
pseudo-obstruction as a complication of paragangliomas: case
5 Flotats A, Carrió I, Agostini D, et al; EANM Cardiovascular Com-
mittee European Council of Nuclear Cardiology. Proposal for
standardization of 123I-metaiodobenzylguanidine (MIBG) cardio-
ac sympathetic imaging by the EANM Cardiovascular Committee
and the European Council of Nuclear Cardiology. Eur J Nucl Med
Mol Imaging 2010;37(09):1802–1812
6 Sisson JC, Shapiro B, Meyers L, et al. Metaiodobenzylguanidine to
map scintigraphically the adrenergic nervous system in man. J
7 Wakabayashi T, Nakata T, Hashimoto A, et al. Assessment of
underlying etiology and cardiac sympathetic innervation to iden-
tify patients at high risk of cardiac death. J Nucl Med 2001;42(12):
1757–1767
8 Genovese EA, Mallardo V, Cipullo S, et al. Cardiac sympathetic
innervation imaging with myocardial MIBG scintigraphy. Recenti
Prog Med 2013;104(7–8):356–360
9 Ichikawa Y, Takeda K, Murashima S, et al. Increased myocardial
uptake of iodine-123 metaiodobenzylguanidine on delayed images,
compared with early images, in patients with multiple system
metaiodobenzylguanidine cardiac imaging as a method to detect
early sympathetic neuronal dysfunction in chagasic patients with
normal or borderline electrocardiogram and preserved ventricu-