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Abstract Anaplastic lymphoma kinase (ALK) is a promising target for the treatment of non-small cell
lung cancer. Under crizotinib treatment, drug resistance and progressive disease appeared
after the point mutations arising in the kinase domain of ALK. Second-generation ALK
inhibitors can solve the deficiencies of the first generation, especially the drug resistance in
cancer chemotherapy. Ceritinib (LDK378), a pyrimidine derivative, for example, can inhibit
theactivityofALKwith an IC50 valueof40.7nmol/L, andcanexperiencediseaseprogression
after initial treatment with crizotinib. Unfortunately, clear structure–activity relationships
have not been identified to date, impeding the rational design of future compounds
possessing ALK inhibition activity. To explore interesting insights into the structures of
pyrimidine derivatives that influence the activities of the second-generation ALK inhibitors,
three-dimensional quantitative structure–activity relationship (3D-QSAR) and molecular
docking were performed on a total of 45 derivatives of pyrimidine. Comparativemolecular
field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA)
techniques were used to generate 3D-QSAR models. CoMFA and CoMSIA were performed
using the Sybyl X 2.0 package.Molecular docking analysis was performedusing the Surflex-
Dock module in SYBYL-X 2.0 package. We found in the CoMFA model that the non-cross-
validated r2 valuewas 0.998, the cross-validatedq2 valuewas 0.663, and the F statistic value
was 2,401.970,while the r2 valuewas 0.988; q2 valuewas 0.730, and F valuewas 542.933 in
CoMSIAmodels, suggesting the good predictability of the CoMFA and CoMSIAmodels. 3D
contourmaps and docking results suggested that different groups on the core parts of the
compounds could enhance the biological activities. Based on these results, the established
3D-QSARmodels and thebinding structures of ALK inhibitors obtained favor the prediction
of the activity of new inhibitors andwill behelpful in the reasonable design of ALK inhibitors
in the future.
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Introduction

Anaplastic lymphoma kinase (ALK), a receptor tyrosine
kinase that belongs to an insulin receptor superfamily, is
responsible for the development of different tumor types.
According to the current study, ALK has not been found to
have an essential physiological role in the normal body, and
ALK fusion proteins have been connected with a wide
spectrum of human cancers.1–3 Evidence suggested that
ALK fusion gene has been mainly expressed in the central
nervous system and other parts of the brain and its expres-
sion levels sharply decline after birth.4 Although not widely
expressed in adult tissue, ALK is implicated in neuronal
development, differentiation, and basal dopaminergic sig-
naling.5 Interestingly, ALK fusion gene also plays a key role in
the development of various cancers, such as non-small cell
lung cancer (NSCLC), breast cancer, ovarian cancer, and
inflammatory myofibroblastic tumors.6–8 ALK participates
in the regulation of cell proliferation associated the PLC-γ and
Ras/Raf/MEK/ERK1/2 pathways, and cell survival associated
the JAK/STAT and PI3K/Akt (PKB) pathways.9–11 These differ-
ent pathways can be activated by ALK fusion proteins, which
are interconnected and overlapping. Thus, many novel po-
tent ALK inhibitors have been reported just like mushroom-
ing in recent years.12

The echinoderm microtubule-associated protein-like 4
(EML4)-ALK fusion-type tyrosine kinase is an oncoprotein
found in NSCLC, and has been validated as a novel thera-
peutic target by Pfizer’s first-generation ALK inhibitor cri-
zotinib (PF2341066, Xalkori), which was approved by Food
and Drug Administration in 2011 as the standard treatment

for ALK-positive NSCLCs. However, despite the good clinical
effect of crizotinib, subsequent treatment also resulted in
mutation L1196M,13–17 which is similar to gatekeeper
mutations in the EGFR-T790M and ABL-T315I kinase
domains.18,19 Therefore, there is an urgent need for a new
generation of ALK inhibitors that are able to overcome drug-
resistant mutants such as L1196M. Recently, the potent and
high selectivity of the second-generation ALK inhibitors
including X-396, alectinib (CH-5424802), ASP3026,
AP26113, and ceritinib (LDK378) have been found. These
inhibitors exhibit good biological activity, but are not
enough for the possible resistance mutations,20,21 Given
above, we can learn from both of the drug resistance of the
first-generation ALK inhibitors of crizotinib and the better
treatment effect of the second-generation ones, by means of
computational techniques, to in-depth study the structure–
activity relationship of the second-generation ALK
inhibitors.

The ALK inhibitors developed recently are shown
in ►Fig. 1. In the present study, a computer-aided drug
design was used to set three-dimensional quantitative
structure–activity relationship (3D-QSAR) models using
45 derivative molecules with anti-ALK ability.22–24 Compar-
ative molecular field analysis (CoMFA) and comparative
molecular similarity indices analysis (CoMSIA) models
based on ligand alignment were made. Both the contour
maps of CoMFA and CoMSIA revealed the key factors
affecting the activities of the inhibitors, and guided us to
design new potent ALK inhibitors. This study may provide a
theoretical basis for the design of ALK inhibitors in the
future.

Fig. 1 Representative ALK inhibitors. ALK, anaplastic lymphoma kinase.
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Materials and Methods

Data Sets
A total of 45 molecules of pyrimidine derivatives taken from
the literature were used to build 3D-QSAR models. All the
data were divided into a training set comprising 39 mole-
cules (87%; compounds 1–4, 6–15, 17–34, 36–38, 40, and 42–
45) for generating a 3D-QSAR model and a test set compris-
ing 6 (13%; compounds 5T, 13T, 16T, 35T, 39T, and 41T)
molecules for validating the QSAR models’ quality.

The 3D structures of the compounds were constructed
using the sketch module in Sybyl X 2.0 package. Partial
atomic charges were calculated by the Gasteiger–Huckel
method before energy minimization using the Tripos force
fieldwith a convergent threshold of a maximum deviation of
0.01 kcal/(mol Å).25,26 Molecular alignment is the most
sensitive factor for building reliable 3D-QSAR models. The
biological activities were measured by calculating the con-
centration of the compound responsible for 50% of the
maximum inhibition (IC50) and were converted into pIC50

(�logIC50) according to a reported study.27 The chemical
structures of compounds 1–45 along with their biological
activities are given in ►Table 1.

Molecular Docking Studies
The diversity of the datasets containing different backbones
and the molecular alignment, which are obtained through
molecular docking, is crucial for developing CoMFA and
CoMSIA models. Molecular docking was manipulated using
the Surflex-Dock module in SYBYL-X 2.0 to explore the
interactions between the binding sites of ALK (PDB code:
4MKC from the RCSB protein data bank) andmolecules. After
deleting the ligands and water molecules in the ALK-binding
site, the ALK inhibitors (compounds 1–45) with electric
charges and hydrogen atoms were butt jointed with the
ALK-binding pocket. The partial atomic charges of all inhib-
itors were calculated using Gasteiger–Huckel charge before
docking. The minimization of each structure was also per-
formed using the Tripos force Field. Other parameters were
set to default and each docked molecule produced 20 con-
formations. The docking total scores of compounds 1–45 are
shown in ►Table 2.

The docking results of compounds 1–45 and the binding
pocket of ALK (PDB code: 4MKC) are shown in►Figs. 2 and 3,
respectively. Templatemolecule 21 (yellow)was docked into
the binding pocket of ALK. Hydrogen bonding interactions
are shown with dotted yellow lines. These images were
generated using the Sybyl-x 2.0 program.

Next, according to the maximum similarity and the
direction of stretching in the pocket, the best conformations
of compounds 1–45 for molecular modeling alignment were
selected for generating the best QSAR model.

Molecular Modeling Alignment
Molecules of the training sets and text sets were aligned onto
compound 21which possessed the highest activity (►Fig. 2).
The alignments will be used for the further 3D-QSAR study.
The 39 molecules of the training set were aligned onto the

high potent template molecule 21 (IC50¼0.07 nm, pIC50

¼10.15). The alignment results and common substructures
are shown in ►Fig. 3. The substructure had the largest basic
structure and kept the molecules’ space orientation consis-
tent with the protein pocket of 4MKC. As shown in ►Fig. 3,
the 39 molecules of the training set are mainly different in
the piperidine ring direction, which is shown in previous
reports that the ligands make hydrogen bonds at the hinge
area via the pyrimidine and amino nitrogen atoms onto the
backbone nitrogen and oxygen of Met1199, respectively.28

The central pyrimidine ring of these 39 training set mole-
cules is sandwiched between Ala1148 and Leu1256, and its
chlorine substituent is directed toward the back of the
pocket, making hydrophobic contacts with gatekeeper
Leu1196. The piperidine ring extends to the solvent and is
engaged in a salt bridgewith Glu1210. The sulfonyl makes an
intramolecular H-bond.28,29 The 39 training set molecules
aligned onto the high potent template molecule 21 extend
almost outside the pocket, which can core likely to study the
effect of the substituents at this position on the molecular
activity, and the terminal piperidine fits closely to the
protein surface and makes a salt bridge with E1210. As
discussed earlier, the alignment of compound structures
plays a key role in developing successful 3D-QSAR models.
Our effort is to study the effect of different substituents on
the piperidine ring and the orientation of the substituents on
the activity of the ALK inhibitor. Hence, the docked poses of
the ligands were used to develop receptor-based 3D-QSAR
models.

Construction of the 3D-QSAR Model
QSAR and 3D-QSAR had a profound impact on medicinal
chemistry.30 CoMFA is a promising new approach to
structure/activity correlation, its characteristic features are
a representation of ligand molecules by their steric and
electrostatic fields, combining the method sampling at the
intersections of a 3D lattice, optimal mutual alignment
within a series, minimizing the root mean square field
differences between molecules, analyzing data by partial
least squares (PLSs), using cross-validation to maximize
the likelihood that the results have predictive validity, and
graphic representation of results, as contoured 3D coefficient
plots. However, comparative molecular similarity index
analysis (CoMSIA) is more comprehensive than CoMFA be-
cause of other two fields’ analysis, hydrogen bond receptor
and hydrogen bond donor.31 Residual of actual and predicted
pIC50 values is an important factor for CoMFA, CoMSIA, and
3D-QSAR models.

An ideal way to access the robustness and predictive
ability of 3D-QSAR models is to estimate the performance
of the models on a validation set of compounds which were
not used inmodel constructions.32 The observed activity and
calculated activity are shown in ►Table 3 based on the
prediction of the models, which aligned with the 39 mole-
cules of the training set. The best CoMSIA model was devel-
oped using four descriptor fields, which were steric,
electrostatic, hydrophobic, and hydrogen-bond acceptor
fields.
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Table 1 Compounds 1–45 and their biological activities for ALK target

Compound Structure IC50 (nmol/L) pIC50

1 1 9.00

2 7 8.16

3 2 8.70

4 16 7.80

5 T 5 8.30

6 5.2 8.28

7 1.7 8.77

8 1000 6.00

(Continued)
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Table 1 (Continued)

Compound Structure IC50 (nmol/L) pIC50

9 1900 5.72

10 800 6.10

11 2500 5.60

12 1500 5.82

13T 3600 5.44

14 0.22 9.66

15 2 8.70

16T 0.33 9.48
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Table 1 (Continued)

Compound Structure IC50 (nmol/L) pIC50

17 3.1 8.51

18 0.18 9.74

19 0.72 9.14

20 0.33 9.48

21 0.07 10.15

22 0.28 9.55

23 0.49 9.31

24 0.37 9.43

(Continued)
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Table 1 (Continued)

Compound Structure IC50 (nmol/L) pIC50

25 0.49 9.31

26 2 8.70

27 0.76 9.12

28 0.59 9.23

29 0.38 9.42

30 1.19 8.92

31 0.12 9.92

32 0.86 9.07
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Table 1 (Continued)

Compound Structure IC50 (nmol/L) pIC50

33 0.75 9.12

34 0.18 9.74

35T 0.68 9.17

36 1.36 8.87

37 1.86 8.73

38 1.88 8.73

39T 4.77 8.32

40 2000 5.70

(Continued)

Pharmaceutical Fronts Vol. 4 No. 3/2022 © 2022. The Author(s).

3D-QSAR and Docking Studies on Pyrimidine Derivatives of Second-generation ALK Jiang et al. e143



The 3D-QSAR methods rely on the principle that the 3D
geometric and electronic features of molecules correlate
with their biological activities.33 Furthermore, 3D-QSAR
also plays an important role in the optimization of pharma-
cologically active compounds and in the prediction of the
biological activities of newly designed compounds.34 The
predicted pIC50 values for the training and test set com-
pounds are listed in ►Table 3 and depicted graphically
in ►Fig. 4, from which it can be seen that all points are
located near.

Results and Discussion

CoMFA and CoMSIA Analysis
CoMFA and CoMSIA models were derived from a training set
of 45 compounds with pIC50 values ranging from 5.44 to
10.15 (►Table 3). The PLS statistical parameters of CoMFA
and CoMSIA models are listed in ►Table 4, which are useful
tools to derive multilinear relationships between indepen-
dent and dependent variables, together with a cross-valida-
tion test were used for the generation and internal validation

of the CoMFA and CoMSIA models.35 As ►Table 4 shows,
CoMFA and CoMSIA models were developed, and the final
modelswere selected according to the statistical parameters.

PLS analysis on all of the compounds in the training set
resulted in a CoMFAmodelwith a cross-validated q2 of 0.663.
Thismodel gave an optimal number of components of 8 and a
conventional correlation coefficient r2 of 0.998. The corre-
sponding steric and electrostatic field descriptors explained
47 and 52% of the total variance. For CoMSIA analysis, five
descriptor fields (steric, electrostatic, donor, acceptor, and
hydrophobic) were considered, and r2 (0.988) and q2 (0.732)
values were obtained with a satisfactory result.

CoMFA and CoMSIA Statistical Result
It is important to make an initial inspection of the inhibitor
molecules before establishing the 3D-QSAR models. Statisti-
cally, the r2 value > 0.3 of the predicted set is usually
considered significant, while the r2 value> 0.5 is statistically
more significant in CoMFA and CoMSIA studies.36 As listed
in►Fig. 4(A, B), they show a good line fit. The reason for this
outlier may be different structure or different binding

Table 1 (Continued)

Compound Structure IC50 (nmol/L) pIC50

41T 1.59 8.80

42 0.88 9.06

43 1 9.00

44 18 7.74

45 3 8.52

Note: T¼ test set. Red section is the common substructure of compounds 1–45.
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conformations, as well as the larger deviation between the
actual and predicted pIC50 values. As shown in►Table 4, the
optimal CoMFA model resulted in a cross-validated q2 of
0.663, a non-cross-validated correlation coefficient r2 of
0.998, a standard error of estimation (SEE) value of 0.057,
and F statistic value (F) of 2401.97. For the CoMSIA analysis,
the q2 value of 0.732, r2 value of 0.988, SEE value of 0.15, and
the F value of 542.933 were calculated, respectively.

For the CoMFA model, the contributions of the steric and
electrostatic fields were calculated to be 47 and 52%, respec-
tively; thus, the electrostatic field has more influence in
comparison to the stericfield. For the optimal CoMSIAmodel,
five descriptor fields were considered including the steric,
electrostatic, hydrophobic, hydrogen bond donor, and hy-
drogen bond acceptor. Their contributions were 10.1, 30.3,
13.2, 20.9, and 24.5%. ►Table 3 lists the actual and predicted
pIC50 values of the training and test set aswell as the residues
between them.

CoMFA Contour Maps
In the 3D-QSAR study, the striking feature of CoMFA and
CoMSIA modeling is the visualization of 3D plot. The CoMFA
model based on the training set of 39 compounds was

employed to investigate the existence of any correlation
between chemical structures and activity of ALK inhibitors.
Here, to elaborate the possible effects of different groups on
the core parts of compounds 1–45 on the biological activities
of the compounds, we use the following two skeletons
(Skeleton 1 and Skeleton 2) to elaborate with R1, R2, R3, R4,
and R5, as listed in ►Fig. 5(A, B).

The contour map for the final COMFA model is shown in
►Fig. 6. Results from the prediction of the steric field contour
map of CoMFA (►Fig. 6A) and the biological activities of

Table 2 Docking total scores of compounds 1–45 by Surflex-
Dock using Sybyl-X 2.0

Compounds Total score Compounds Total score

1 8.5401 24 8.6672

2 8.1256 25 9.1738

3 9.1248 26 8.7432

4 9.2192 27 9.1253

5T 8.0458 28 8.1218

6 7.9657 29 9.4808

7 8.2245 30 8.4022

8 7.8364 31 9.5286

9 7.5511 32 8.4212

10 8.0818 33 9.4346

11 8.3982 34 9.1064

12 7.6292 35T 10.2484

13T 8.6261 36 7.4582

14 9.4632 37 7.7205

15 8.4694 38 7.3739

16T 9.7901 39T 8.3825

17 8.9787 40 8.5255

18 9.4412 41T 8.5025

19 8.3258 42 8.6453

20 8.5517 43 8.3596

21 9.1950 44 6.9046

22 8.8529 45 8.6297

23 8.7688

Fig. 2 Compounds 21 (template molecule), 35 (the highest total
score), and 4MKC (ligand of 4MKC) were docked and superimposed in
the pocket of crystalline complex of 4MKC, hydrogen bond (yellow).

Fig.3 Molecular alignment. (A) Common sub-structure of com-
pounds 1–45. (B) 39 molecules of the training sets aligned on the
template molecule.
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Table 3 The actual and predicted pIC50 values of compounds 1–45

Compound pIC50 CoMFA CoMSIA

Predicted Residuals Predicted Residuals

1 9.00 9.05 �0.05 8.86 0.04

2 8.15 8.08 0.07 7.99 0.16

3 8.70 8.66 0.04 8.82 �0.12

4 7.80 7.84 �0.04 7.71 0.09

5T 8.30 8.35 0.05 8.29 �0.01

6 8.28 8.28 0.00 8.25 0.03

7 8.77 8.73 0.04 8.54 0.16

8 6.00 5.93 0.07 6.06 �0.06

9 5.72 5.74 �0.02 5.68 0.04

10 6.10 6.11 �0.01 6.14 �0.04

11 5.60 5.60 �0.00 5.57 0.03

12 5.82 5.80 0.02 5.81 0.01

13T 5.44 5.43 0.01 5.48 0.04

14 9.66 9.56 0.10 9.68 �0.02

15 8.70 8.69 0.01 8.85 �0.15

16T 9.48 9.40 �0.08 9.49 0.01

17 8.51 8.56 �0.05 8.54 �0.03

18 9.74 9.74 0.00 9.61 0.13

19 9.14 9.09 0.05 8.90 0.24

20 9.48 9.59 �0.11 9.41 0.07

21 10.15 10.08 0.07 9.88 0.07

22 9.55 9.54 0.01 9.41 0.14

23 9.31 9.30 0.01 9.52 �0.21

24 9.43 9.41 0.02 9.43 0.00

25 9.31 9.32 �0.01 9.37 �0.06

26 8.70 8.74 �0.04 8.76 �0.06

27 9.12 9.13 �0.01 9.16 �0.04

28 9.23 9.24 �0.01 9.10 0.13

29 9.42 9.57 �0.15 9.60 �0.18

30 8.92 8.93 �0.01 9.12 �0.20

31 9.92 9.93 �0.01 9.78 0.14

32 9.07 9.08 �0.01 9.05 0.02

33 9.12 9.13 �0.01 9.06 0.06

34 9.74 9.65 0.09 9.66 0.08

35T 9.17 9.10 �0.07 9.20 0.03

36 8.87 8.88 �0.01 8.78 0.09

37 8.73 8.77 0.04 8.69 0.04

38 8.73 8.79 �0.06 8.80 �0.07

39T 8.32 8.25 �0.07 8.33 0.01

40 5.70 5.73 �0.03 5.72 �0.02

41T 8.80 8.80 0.00 8.82 0.02

42 9.06 9.05 0.01 9.34 �0.28

43 9.00 8.96 0.04 8.95 �0.05

44 7.74 7.73 0.01 7.95 �0.21

45 8.52 8.59 �0.07 8.79 �0.27
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compounds (►Table 1) showed that substituents of 1,2,3,4-
tetrahydro-isoquinoline with bulk substituents at this site
would possess better biological activity. Compounds 1 (pIC50

¼9.00) and 43 (pIC50¼9.00)with 1-hydroxy-propane-2-one
group and propan-1-ol group, respectively, possessed better
biological activity than the methane sulfonamide group,
carbonyl group, and 3-methyl-oxetane group-substituted
compounds 2 (pIC50¼8.16), 26 (pIC50¼8.79), and 40 (pIC50

¼5.70). In addition, compound 12 (pIC50¼5.82)with a bulky
substituent of tetrahydropyran group in the position of
2,3,4,5-tetrahydro-1H-benzoazepine possessed better bio-
logical activity than the compound13T (pIC50¼5.44) with
the tetrahydropyran group at the same position (►Table 1).
Compounds with bulky groups at the R4 position such as
compound 19 (pIC50¼9.42) exhibit higher activity. On the
contrary, compounds 28 (pIC50¼9.23) and 30 (pIC50¼8.92)
exhibit lesser inhibitory activities. The R3 position showed
that the first atom to which it is connected shows a yellow
contour, however, at the end of R3 position shows green. For
instance, compound 39 (pIC50¼8.32) with a bulky group
displayed lower activity than compounds 36 (pIC50¼8.87),
37 (pIC50¼8.73), 38 (pIC50¼8.73), and 41 (pIC50¼8.80).
Similarly, at the end of R3 position, compound 31 (pIC50

¼9.92) with bulky substituent possessed better biological
activity than the compound 22 (pIC50¼9.55) and compound
28 (pIC50¼9.23).

In the CoMFA electrostatic field map, blue contours rep-
resented regions where electropositive substitutions in-
creased the activity, while red contours indicated regions
where electronegative substitutions increased the activity.
The electrostatic fieldmap is shown in►Fig. 6B. Blue contour
maps surrounding R3 positions suggested that electroposi-
tive groups were favorable at these positions for improved
inhibitory potency. Position R3 with electropositive

Fig. 4 (A) Plot of experimental versus predicted pIC50 for training and
test set by CoMFA. (B) Plot of experimental versus predicted pIC50 for
the training and test set by CoMSIA.

Table 4 The best results of the CoMFA and CoMSIA PLS statistical results

Descriptors ONC q2 r2 SEE F Field contributions

S E H A D

COMFA

Sþ E 8 0.663 0.998 0.057 2401.97 0.47 0.52 – – –

COMSIA

Sþ E 3 0.57 0.889 0.444 93.332 0.272 0.728 – – –

Sþ EþH 3 0.609 0.9 0.421 104.898 0.219 0.564 0.217 – –

Sþ Eþ A 3 0.509 0.878 0.466 83.597 0.191 0.482 – 0.327 –

Sþ EþD 5 0.738 0.985 0.169 430.668 0.146 0.512 – – 0.342

Sþ EþHþA 5 0.57 0.975 0.219 252.912 0.145 0.389 0.191 0.275 –

Sþ EþHþD 10 0.77 0.999 0.034 5, 243.544 0.118 0.432 0.166 – 0.284

Sþ EþDþA 5 0.7 0.985 0.168 434.205 0.117 0.365 – 0.233 0.286

Sþ EþHþAþD 5 0.732 0.988 0.15 542.933 0.101 0.313 0.132 0.209 0.245

Abbreviations: A, acceptor; D, donor; E, electrostatic; F value, F-test value; H, hydrophobic; S, steric; q2, cross-validated correlation coefficient; NOC,
optimum number of components; r2, non-cross-validated correlation coefficient; SEE, standard error of estimation.
Note: Final chosen model for COMSIA analysis is indicated in bold font.
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Fig. 5 Skeleton for all molecules of dataset in CoMFA and CoMSIA analysis. (A) Skeleton 1 represented the common skeleton of these
compounds: 1–12, 13T, 15, 26, 40, 43, 44, and 45. (B) Skeleton 2 represented the common skeleton of compounds 1–45 except skeleton 1
represented.

Fig. 6 CoMFA contour maps illustrating (A) steric and (B) electrostatic features in combination. The green color signifies regions that favor
sterically bulky groups, and the yellow color signifies the opposite. Similarly, the blue color signifies positive charge and red color signifies
negative charge that favored to increase the potency.

Fig. 7 CoMSIA contour maps of (A) steric, (B) electrostatic, (C) hydrophobic, (D) H-bond donor, and (E) H-bond acceptor. In the CoMSIA steric
map, green contours represented sterically favorable regions where bulky substituents increased the activity. The yellow contours indicated
sterically unfavorable region where bulky substituents decreased the activity.
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substitutions displayed better biological activity and posi-
tion R4 with electronegative substitutions can increase the
activity.

CoMSIA Contour Maps
The five CoMSIA contour maps, namely, steric, electrostatic,
hydrophobic, donor, and acceptor are shown in ►Fig. 7.

►Fig. 7A depicts the CoMSIA steric contour map of the
optimal model with compound 21 overlaid. In this map, the
green (sterically favorable) and yellow (sterically unfavor-
able) contours represented 80 and 20% of level contributions,
respectively. The large green contour occurring at the end of
R1 position indicated that compoundswith bulk substituents
at this site would possess better biological activity. The
activity of compound 6 (pIC50¼8.28) and compound 8
(pIC50¼6.00) increased after the secondary nitrogen sub-
stituents on the position were replaced with a small-size
group, such as compound 10 (pIC50¼6.10), compound 11
(pIC50¼5.60), and compound 12 (pIC50¼5.82). It is clear
that compounds 22 (pIC50¼9.55), 23 (pIC50¼9.31), 24 (pIC50

¼9.43), and 25 (pIC50¼9.31) with bulky substituents dis-
played higher biological activity than compound 27
(pIC50¼9.12).

►Fig. 7B shows a large and a small red contour enclosing
regions R1 and R3, respectively. By comparing the series of
compounds 22 with 24, it can be seen that as charge effects
increased (N has electronegativity of 3.04 and C has
electronegativity of 2.55), the inhibitory activity increased
as well.

The CoMSIA contour map of hydrophobic contribution is
described in►Fig. 7C. In this figure, the yellow (hydrophobic
favorable) and white (hydrophobic unfavorable) contours
represent 80 and 20% of level contributions, respectively.
Obviously, a large yellow and a white region that R3 position
with hydrophilic groups can increase biological activity.
However, a large-sized yellow contour located at the para-
site of the R5 and R6 aromatic ring represented regionswhere
the compounds with more hydrophobicity at this site
would possess better biological activity. Moreover, at the
end of R1 substituents, the compounds with hydrophobicity
will possess better biological activity.

In ►Fig. 7D, the cyan and purple contour maps indicated
favorable and unfavorable H-bond donor groups, represent-

ing 80 and 20% of level contributions, respectively. Light
purple appears at the end of the R1 position, indicating that
H-bond donor groups enhanced biological activity.

As a validation of the CoMSIAmodel that H-bond acceptor
in ►Fig. 7E, the hydrogen bond acceptor field of the CoMSIA
modelwas represented bymagenta (hydrogen bond acceptor
favorable) and red (hydrogen bond acceptor disfavorable),
representing 80 and 20% of contributions ratio, respectively.
The large magenta contours near the R1 position suggested
that the introduction of hydrogen bond acceptor substitu-
ents to these regions would increase activity. In addition, the
R3 regions showed that the biological activity influenced by
the H-bond acceptor depends on the nature of its
substituents.

Conclusion

In this article, we developed a statistically significant 3D-
QSAR model of a series of piperidine-substituted ana-
logues through CoMFA, CoMSIA, and molecular docking.
In this 3D-QSAR model, shown in ►Fig. 8, the derived
leave-one-out (LOO) validated the PLS regression QSAR
model and showed acceptable r2 (0.988) and q2 (0.730). As
noted, this model demonstrates that R1 and R3 played a key
role in increasing molecular activity, where the R1 position
may be better with small, negatively charged, hydropho-
bic, and hydrogen bond donor groups, and the R3 position
may be better with small, positively charged, and hydro-
gen bond donor groups.

As is shown in experimental data as well as CoMFA and
CoMSIA contour maps, this model is credible for explaining
the structure–activity relationship of the second-generation
ALK inhibitors with steric, electrostatic, hydrophobic, donor,
and acceptor. The results from the 3D-QSAR models and
molecular docking would lead to a better understanding of
the structural features needed to design and synthesize novel
potential second-generation ALK inhibitors.
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