Photon-Counting Detectors in Computed Tomography: A Review

Muriel Jeremia Gomes1 Jaseemudheen M Manakkal1

1 Department of Radiodiagnosis and Imaging, Medical Imaging Technology, KS Hegde Medical Academy, Mangalore, Karnataka, India

Address for correspondence Manakkal M Jaseemudheen, M.Sc, Department of Radiodiagnosis and Imaging, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka- 575018, India (e-mail: jaseemudheen12@gmail.com).

Introduction

Computed tomographic (CT) scanners were introduced early in the 1970s, and they have since improved diagnostic radiology.1,2 A CT image is described as a spatial distribution of the imaged object’s linear attenuation coefficients. The coefficient at each site is determined by the object’s chemical composition, mass density, and X-ray photon energy.3 A vital component of the CT scanner is its detector that is responsible for image production and has a significant impact on image quality and radiation exposure. All modern commercial CT scanners utilize solid-state detectors and have a third-generation rotate–rotate design.4 However, the currently used energy-integrating detector (EID) system has disadvantages as of electronic noise and low signal-to-noise ratios resulting in an increase in dose to the patient.5–7 The next significant advancement in CT is anticipated to be the advent of energy-resolved, photon-counting detectors (PCDs).8 According to various studies previously performed with PCDs, CT has shown to have multiple advantages. This includes remarkably high spatial resolution, reduced electronic noise and beam-hardening and metal artifacts, increased contrast-to-noise ratio and radiation dose efficiency, and multienergy data acquisition while maintaining diagnostic quality.9,10

Abstract

Photon-counting computed tomography (CT) is a new technique that has the potential to revolutionize clinical CT and is predicted to be the next significant advancement. In recent years, tremendous research has been conducted to demonstrate the developments in hardware assembly and its working principles. The articles in this review were obtained by conducting a search of the MEDLINE database. Photon-counting detectors (PCDs) provide excellent quality diagnostic images with high spatial resolution, reduced noise, artifacts, increased contrast-to-noise ratio, and multienergy data acquisition as compared with conventionally used energy-integrating detector (EID). The search covered articles published between 2011 and 2021. The title and abstract of each article were reviewed as determined by the search strategy. From these, eligible studies and articles that provided the working and clinical application of PCDs were selected. This article aims to provide a systematic review of the basic working principles of PCDs, emphasize the uses and clinical applications of PCDs, and compare it to EIDs. It provides a nonmathematical explanation and understanding of photon-counting CT systems for radiologists as well as clinicians.

Keywords
- photon-counting detectors
- photon-counting computed tomography
- energy-integrating detector

DOI https://doi.org/10.1055/s-0042-1749180. ISSN 2582-4287. © 2022. Nitte (Deemed to be University). All rights reserved. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercialLicense, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd., A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
Energy-Integrating Detectors

Standard CT detectors use a two-step indirect conversion technique. First, a scintillator converts the X-ray energy into visible light. Second, visible light is collected and converted into an electrical charge using a photodiode (PD). Fig. 1 shows the construction of an indirect CT array detector.

Scintillators are commonly organized in two-dimensional arrays in current CT scanners, which include a multislice CT geometry. A reflecting material matrix forms part of the scintillator array’s construction. The PDA is physically supported by the reflecting matrix, which reduces cross-talk between PDA units. A separate low-noise preamplifier is attached to each element of the PDA. This PDA collects light absorbed in the separation layers do not contribute to the detector’s geometric dosage efficiency. The X-ray photons absorbed in the separation layers do not contribute to the measured signal, despite having passed through the patient. Moreover, electronic noise significantly influences EID images in low-dose settings (up to a 5.8% increase). In addition to this, another disadvantage comes with spectral CT. A tube potential of at least 120 kVp is required for adequate spectrum separation. As a result, lowering the radiation dosage for young individuals depends on reducing the tube current. Increased kVp, ultimately, reduces the contrast. Rapid voltage switching using a single X-ray tube degrades average image quality, limits dual-energy spectrum contrast, and inhibits dose reduction due to lack of tube current modulation. The sensitivity to optical photons is lower in dual-layer detectors with single tubes. There is more cross-talk between the two detector layers, resulting in greater noise levels in material decomposition imaging.

Photon-Counting Detectors

EIDs are used in currently available multidetector CT scanners, wherein the total energy deposited by all photons is proportional to the measured signal without precise information about any individual photon or its energy. PCDs use direct-conversion techniques to count individual photons while measuring energy information simultaneously. These detectors, which are based on arrays of pixelated cadmium telluride and cadmium zinc telluride, are electrically connected with application-specific integrated circuits for reading purposes. These will perform photon-counting that is quick and highly efficient.

Photon-Counting Detectors—Basic Principles

During direct conversion, there is a production of electron-hole pairs within the semiconductor due to the absorption of X-rays. Between the cathode situated at the top and the pixelated anode electrodes situated at the bottom of the detector, the charges are separated by a strong electric field (Fig. 2).

The electrons migrate to the anodes, where they cause small current pulses lasting a few nanoseconds (109 seconds). The current pulses are converted into voltage pulses using a full width at half maximum of 10 to 15 nanoseconds in a pulse-shaping circuit. The pulse height of the voltage pulses is translated from the quantity of charge in the current pulses. As a result, the pulse height is proportional to the absorbed X-ray photons’ energy E. When these pulses reach a certain threshold, they are individually measured. Typically, the minimum threshold energies are more than 20 keV.

The threshold is set so that the pulses are greater than the electronic noise but lesser than the pulses produced by the incoming photons. Additionally, the detector may categorize incoming photons into several energy bins (usually two to eight) based on their energy by comparing each pulse to numerous threshold values. As a result, the pulse counts are nearly free of electronic noise. On the contrary, the total energy deposited throughout the measurement interval, the electronic noise included, is measured and integrated using EIDs.

Advantages and Applications of Photon-Counting Detectors

Compared with current detectors, one of the critical advantages of the PCD is the higher spatial resolution. PCDs...
developed for clinical CT feature pixel sizes that are smaller than today’s typical EIDs, which have pixel sizes of the order of 1 mm. Hence, it offers a higher spatial resolution.22,23 There is no requirement for extra separation layers between the individual detector cells since they are defined by the strong electric field between the electrodes. To significantly enhance spatial resolution, each “macro” detector pixel bounded by collimator blades can be split into smaller detector subpixels that are read out individually.12 Increasing spatial resolution further might assist some applications, such as lung and temporal bone imaging.24,25

When compared with solid-state scintillation detectors, there is the removal of electronic noise in PCD, which results in reduced noise in the image, reduction in streak artifacts, and stability of CT numbers in scanning with low dose or bariatric imaging.11

Photon weighting: Different weights can be assigned to photons of different energies in the processes of photon detection and image generation, impacting the signal’s contrast as well as noise. The transmitted X-ray photons' energy is influenced by the contrast between two projection measurements. Low-energy photons, on average, contain more contrast information than high-energy photons. In addition, if the material composition of two projection measurements differs, the dependence of contrast on photon energy is enhanced, and higher contrast can be produced by providing more weight to photons that contain more contrast information. By giving specific photons more weight than others, the variance is increased compared with the mean value, therefore lowering the signal-to-noise ratio. Photon weighting, in many instances, is done indirectly through the material decomposition process. This process can be thought of as using the contrast and noise of the signal to estimate the thickness of the material with minimal variance.26 Because tissue attenuation in the low-energy region of the X-ray spectrum is less homogenous, the higher weighting of low-energy photons results in an increase in beam-hardening artifacts. This problem can be corrected by material decomposition.27

Low-energy photons are attenuated more by the photoelectric effect, whereas high-energy photons are attenuated mainly through the Compton scattering effect. As a result of higher photon attenuation in the low-energy spectrum due to the photoelectric effect, materials with high atomic numbers like iodine contribute to improved contrast on CT scans. The detector signal in a typical EID CT system is proportional to the total energy of all collected X-ray photons. As a result, lower-energy photons contribute very little to the detector signal than higher-energy photons from high-Z materials like iodine, which have less information. Hence, in an EID CT system, the signal produced by lower-energy photons is underweighted, lowering the contrast-to-noise ratio of the iodine signal. PCD CT systems count each individual photon uniformly regardless of the detected photon energy. As a result, low-energy photons offer more image contrast in PCD CT than in EID CT, enhancing image contrast and contrast-to-noise ratio of iodine contrast material. If the radiation dosage is maintained, the increased iodine contrast on a PCD CT system results in a better iodine contrast-to-noise ratio.4

Spectral CT, sometimes also referred to as DECT or dual-energy CT, refers to CT that makes use of two-photon spectra.28 At the energy levels utilized in diagnostic imaging, X-ray photons interact with matter primarily through photoelectric effect and Compton scatter. The photoelectric effect is the process wherein an incident photon causes the ejection of an electron from an atom’s K shell, causing a void in the K shell. The void is filled by an electron from a neighboring shell, resulting in the release of energy in the
 Photon-counting CT is a promising method that is on the approach of being practically viable. This may lead to modifying CT’s clinical utility in the upcoming years drastically. With its high spatial resolution, reduced noise and artifacts, increased CNR, and providing multienergy data acquisition while maintaining diagnostic quality images, photon-counting CT systems are likely to replace EIDs as technology advances.

Description
This article reports the current status, basic working principles, and applications of photon-counting detectors (PCD) compared with the conventional EID used for CT scanners.

Conflict of Interest
None declared.
References

