Treatment Dilemma of Latrogenic Pseudoaneurysm of the Intracavernous Internal Carotid Artery in Young Girl Following Transnasal Transsphenoidal Surgery: A Case Report

Amit K. Sharma1 Anita Jagetia1 Ghanshyam D. Singhal1 Shaam Bodeliwalla1 Arvind K. Srivastava1 Daljit Singh1

1Department of Neurosurgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi, India

Address for correspondence Amit Kumar Sharma, MBBS, MS, MCh, Department of Neurosurgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research, New Delhi 110002, India (e-mail: Dr.amitsharma982@gmail.com).

Abstract

Epistaxis following transnasal transsphenoidal (TNTS) removal of pituitary adenoma can be massive and life-threatening. The intracranial source of bleeding is usually the intracavernous segment of the internal carotid artery (ICA) or adjacent branches. Injury to the cavernous ICA can lead to pseudoaneurysm (PA) or fistula formation. Management of PA is different from saccular aneurysms. A timely diagnosis and adequate management can restore vessel integrity and prevent associated morbidity. A young patient of growth hormone-secreting pituitary adenoma, who underwent microscopic TNTS excision of the tumour, presented with massive epistaxis. Pseudoaneurysm of the cavernous ICA was initially not seen on computed tomography angiography and was later diagnosed on digital subtraction angiography. The attempted management of PA with coils without stent could not stop aneurysm recurrence. The management of such complicated PAs is discussed, and a literature review is done regarding epistaxis in growth hormone secreting adenoma.

Introduction

Epistaxis following transnasal transsphenoidal (TNTS) removal of pituitary adenoma can be massive and life-threatening.1 The intracranial source of bleeding is usually the intracavernous segment of the internal carotid artery (ICA) or adjacent branches. Injury to the cavernous ICA can lead to pseudoaneurysm (PA) or fistula formation.2 Management of PA is different from saccular aneurysm. The timely diagnosis and adequate management can restore vessel integrity and prevent associated morbidity.3 We are reporting a case of growth hormone-secreting pituitary adenoma in a young girl who underwent microscopic TNTS excision of the tumor and had presented with massive epistaxis. Pseudoaneurysm of the cavernous ICA was not seen on computed tomography (CT) angiography initially and later diagnosed on digital subtraction angiography (DSA). The attempted management of PA with coils without stent could not stop aneurysm growth. The management of such complicated PAs is discussed, and a literature review is done regarding epistaxis in growth hormone (GH) secreting adenoma.

Case Report

Twenty-six-year-old young unmarried female was diagnosed with growth hormone-secreting pituitary macroadenoma...
for the last 3 years with features of acromegaly.
Magnetic resonance imaging revealed a sellar mass of size $1.5 \times 1.6 \times 1.7 \text{ cm}$. The GH level was 27.8 ng/mL. The near-total tumor excision was done using a microscopic TNTS approach. Tumor was greyish pink and soft with rubbery inconsistency. Intraoperatively, there was moderate bleeding and could be controlled without much effort. Seller floor was reconstructed with fat, cartilage, and bone. The next 48 hours were uneventful until the removal of the nasal pack, which resulted in torrential hemorrhage. The nasal cavity was repacked. The patient was stabilized hemodynamically, and CT angiography brain was done, which did not reveal any vascular injury (Fig. 1B). The patient was reoperated to remove the nasal pack, and the tumor bed was inspected for any bleeding point. There was no active bleed. The patient was discharged after 2 days. After 2 weeks of surgery, she had repeated minor epistaxis at home, followed by one episode of massive epistaxis. The patient was readmitted, and nasal gauze packing was done. The GH level was 7.8 ng/mL. Digital subtraction cerebral angiography was performed, which revealed a PA arising from the cavernous segment of the right ICA measuring $0.75 \times 0.45 \text{ cm}$ with no cross flow between two ICAs (Fig. 2A). Two ev3 (Covidien) three-dimensional coils $6 \text{ mm} \times 10 \text{ cm}$ and $3 \text{ mm} \times 6 \text{ cm}$ coils were placed within the aneurysmal sac to occlude the neck. A postoperative angiogram showed complete obliteration of the aneurysmal sac (Fig. 2B). The patient was discharged with no neurological deficits. Her features of acromegaly were resolving. Examining angiogram 6 weeks thereafter showed refilling of aneurysm and coil mass compaction (Fig. 3A). The aneurysm was recoiled, and since there was no residual filling of the aneurysm (Fig. 3B), no stent across the aneurysm neck was placed. However, checking DSA 4 weeks thereafter again revealed coil mass compaction with recurrence of the aneurysm. Ultimately stent-assisted (Solitaire, Covidien) coiling of the aneurysm was performed (Fig. 4A). At one-year follow-up the patient was asymptomatic with stable obliteration on MRI and MRA (Fig. 4B).
The incidence of vascular injury following TNTS is 0.2 to 1.2%. Massive epistaxis can be due to cavernous ICA injury, which may result in a carotid-cavernous fistula or PA. Injury to the ICA during transsphenoidal resection of pituitary tumors typically occurs during aggressive dissection of macroadenomas especially invading the cavernous sinus and encasing the ICA. Carotid injuries are more likely to occur in patients with previous transsphenoidal surgery or radiation therapy, invasive adenomas, endoscopic surgery, anatomical variations such as bulging of ICA into the sphenoid sinus or covered only by the dura mater of the cavernous sinus and the mucosa of the sphenoid sinus without bony covering. In the present case, the tumor was not very large, and the probable cause of injury would have been a deviation from midline reaching more toward the right side of the sella.

The diagnosis could not be made on a CT angiogram, the howsoever good quality it is as in the present case. Perhaps, the vessel at the focal site was in spasm or the CT angiogram was done with nasal pack in situ, which must have covered the injury site of ICA. However, the dissection kept growing, which led to aneurysm formation, and was diagnosed with DSA. Therefore, even if the CT angiogram is negative, DSA should be done, and if first DSA is negative, repeat DSA should be done after 2 to 4 weeks, and DSA/CTA should be repeated following nasal pack removal.

The size of iatrogenic intimal injury is most important to produce PA or dissecting aneurysm. If the injury is less than 2 mm, then most of the time, it heals without morphological changes. However, if the size of arterial injury is around 4 mm, then it has a high probability to produce an aneurysm, and if the size is more than 6 mm, then it would cause complete stenosis of the injured vessel. In the present case as well the neck of the PA was approximately 4 mm, and the rent in the intima is approximate of the same size would have resulted in the formation of PA. There have been many reports of vascular injury in pituitary adenoma, but only eight cases of iatrogenic carotid PA in GH secreting pituitary macroadenoma with acromegaly following transsphenoidal surgery were identified. Acromegalic patients are at a higher risk of sustaining this complication because of the distortion of the nasal-sinus anatomy and the tendency to have tortuous and ectatic carotid arteries, sometimes protruding into the sella.

There are treatment options include carotid ligation to endovascular intervention. The endovascular procedure includes parent artery occlusion, coil embolization, stent-assisted coiling, covered stent placement, and onyx embolization. Endovascular intervention is the most preferred approach. The management of PA differs from saccular nondissecting aneurysm. Since the repair of the intima is essential in dissecting aneurysms, only coiling may not work. The wall can heal by covering it with a stent. The risk of long-term anticoagulation to prevent stroke is a major concern. Our assumption of putting the coils and trying to achieve a good result was wrong as the treatment of dissecting aneurysm is the reconstruction of vessel. The treatment got stable only when a stent was placed across the neck of the aneurysm, which helped in healing the wall and prevented the subsequent flow of blood in the sac.

Conclusion

Delayed massive epistaxis is rare but is a serious complication of transsphenoidal surgery. Vessel wall healing is as important as occluding the pseudoaneurysm.

References

Table 1

<table>
<thead>
<tr>
<th>Studies</th>
<th>Age/Sex</th>
<th>Diagnosis</th>
<th>Time of diagnosis</th>
<th>Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson et al</td>
<td>NR</td>
<td>Delayed epistaxis</td>
<td>NR</td>
<td>Carotid ligation</td>
<td>NR</td>
</tr>
<tr>
<td>Cabezudo et al</td>
<td>41/F</td>
<td>Delayed epistaxis</td>
<td>1 mo</td>
<td>Gradual closure of carotid with</td>
<td>Good</td>
</tr>
<tr>
<td>Reddy et al</td>
<td>56/F</td>
<td>Angiogram</td>
<td>6 wk</td>
<td>The surgical clip of supracalvarial ICA and</td>
<td>Good</td>
</tr>
<tr>
<td>Ahuja et al</td>
<td>52/F</td>
<td>Follow-up angiogram</td>
<td>9 d</td>
<td>Endovascular occlusion of ICA</td>
<td>Temporary</td>
</tr>
<tr>
<td>Raymond et al</td>
<td>28/F</td>
<td>Angiogram</td>
<td>10 d</td>
<td>Surgical packing</td>
<td>Good</td>
</tr>
<tr>
<td>Cappabianca et al</td>
<td>22/F</td>
<td>Angiogram</td>
<td>NR</td>
<td>Coil embolization of the aneurysm</td>
<td>NR</td>
</tr>
<tr>
<td>De Souza et al</td>
<td>38/F</td>
<td>Postoperative MRI</td>
<td>NR</td>
<td>Endovascular cover stent</td>
<td>Good</td>
</tr>
<tr>
<td>Cinar et al</td>
<td>69/M</td>
<td>Angiogram</td>
<td>9 d</td>
<td>Endovascular Parent artery occlusion</td>
<td>Expired on</td>
</tr>
<tr>
<td>Current case (2015)</td>
<td>26/F</td>
<td>Postoperative DSA</td>
<td>2 wk</td>
<td>Endovascular stent-assisted coiling</td>
<td>12th day</td>
</tr>
</tbody>
</table>

Abbreviations: DSA, digital subtraction angiography; MRI, magnetic resonance imaging; NR, no response.