Nasal Septal Perforation Reconstruction with Polydioxanone Plate: A Systematic Review

Marc Levin, MD1 Hedyeh Ziai, MD1 Justin Shapiro, MSc2 Michael G. Roskies, MD, MSc, FRCSC3,4

1 Department of Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
2 Temerty Faculty of Medicine, University of Toronto Temerty, Toronto, Ontario, Canada
3 Department of Otolaryngology—Head and Neck Surgery, University of Toronto Faculty of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
4 Division of Facial Plastic and Reconstructive Surgery, Sinai Health System, Toronto, Ontario, Canada

Abstract

Nasal septal perforation is an uncommon pathology that is difficult to surgically repair and may significantly impact patients’ quality of life. Existing treatments have high complication and failure rates. The use of polydioxanone (PDS) plates to repair septal perforations is an innovative approach that has demonstrated superior outcomes to the conventional techniques. This study aimed to review the literature on PDS plates for nasal septal perforation reconstruction. PubMed, OVID Medline, and OVID Embase databases were searched for relevant articles in June 2021. Search terms included nasal septal perforation, polydioxanone, septal perforation, septal repair, nasal septum, and PDS plate. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were adhered to for this systematic review. Database searches yielded 80 articles. Seven articles were included representing 74 patients. All studies reported the use of PDS plates in addition to other materials. They all reported closure rates of at least 80%. The majority of studies reported no postoperative complications.

Nasal septal perforation reconstruction with PDS plates is a promising approach that has demonstrated positive outcomes. Further larger studies are required to evaluate the long-term efficacy of using PDS plates on patients with septal perforations.

Keywords

► nasal septal perforation
► sepal reconstruction
► PDS plate
► polydioxanone plate

Nasal septal perforations are a relatively uncommon pathology that can occur due to trauma, iatrogenic causes, and inhalation drug use among others.1,2 Perforations can cause symptoms of chronic epistaxis, nasal crusting, congestion, and whistling when breathing.2 These symptoms can significantly impact patient quality of life.

Repair of septal perforations poses a challenge for the surgeon. From a conservative perspective, perforations can be managed with a septal button.3 However, septal buttons can be uncomfortable and hard to fit.3,4 For larger perforations, a local rotational/advancement/free flap reconstruction approach can be used.5 These flap reconstructions can be technically challenging with high complication and failure rates.2 Hence, innovative techniques have been described aiming at improving reconstruction of septal perforations. In the last decade, there have been a limited number of articles published on the use of a polydioxanone (PDS) plate to aid with reconstruction of septal perforations.5–11 PDS is a resorbable polymer that is completely metabolized by the body.12 The PDS plate itself is not actually the material that closes septal perforations. Rather, PDS plates act as the scaffold that supports the recipient’s tissue to regenerate over the perforated septum.12 In a systematic review that evaluated 49 clinical trials and 104 articles, PDS sutures, plates, and mesh were found to have low rates of inflammatory reactions,
foreign body responses, surgical site infections, and postoperative fevers. For example, PDS plates had a surgical site infection rate below 10%.\(^1\)\(^3\) Hence, early research has shown that PDS plates may be a safe and effective way to provide a template for the attachment of tissue grafts to facilitate septal perforation reconstruction without the long-term complications of synthetic grafts.\(^1\)\(^2\) The results of these studies have been promising, showing successful closure of septal perforations with PDS plates.

Despite this aforementioned literature, there is no published collective report on the use of PDS plates in septal reconstruction. Hence, the purpose of this article was to review the literature on PDS plates for nasal septal perforation reconstruction. With such a unified understanding of this technique, surgeons may be able to provide up-to-date, evidence-based care for their patients.

Materials and Methods

The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were adhered to for this systematic review.\(^1\)\(^4\)

Search

PubMed, OVID Medline, and OVID Embase databases were searched on June 20, 2021. Search terms included nasal septal perforation, polydioxanone, septal perforation, septal repair, nasal septum, and PDS plate. These terms were combined with Boolean search terms, AND or OR.

Inclusion/Exclusion Criteria

Prospective and retrospective articles that met inclusion criteria focused on the use of PDS plate for reconstruction of a nasal septum perforation. Articles that used PDS plates for reconstruction of septal deviations (septoplasty) and/or cosmetic rhinoplasty/septorhinoplasty were excluded. Articles that were not in English, had not undergone peer-review, and/or those that did not report original data, such as editorials, letters to the editor, review articles and conference abstracts, were excluded.

Article Selection/Data Extraction and Analysis

Two independent reviewers (M.L. and H.Z.) engaged in article title/abstract screening, and full-text screening according to the inclusion and exclusion criteria. This review was completed using Covidence (Covidence systematic review software; Veritas Health Innovation, Melbourne, Australia). A third reviewer (M.G.R.) was introduced if consensus regarding an article’s inclusion could not be agreed upon.

Data were then extracted from the articles that met inclusion criteria. Such data included the following: study demographic information, included patient symptoms, type of repair completed, materials other than PDS used in repair, results, and complications. Pooled analysis was completed across all included studies regarding patient symptoms, perforation etiology, and closure rates.

The data were organized on a Microsoft Excel worksheet and then analyzed using R software. Descriptive statistics was completed.

Results

Article Inclusion

From the initial search which yielded 80 articles, 11 were selected after title and abstract screening. Following full-text screening, seven articles were selected for final inclusion and data extraction (► Fig. 1). The majority of the included articles were from the United States of America \((n = 4)\).\(^5\)\(^–\)\(^8\),\(^10\),\(^11\) Most articles were published in the last decade (six or seven published in or after 2011).\(^5\)\(^–\)\(^8\),\(^10\),\(^11\) A detailed description of the included studies can be found in ► Table 1.

Fig. 1 The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram.
Patient Demographics
A total of 74 patients were included in this review. The age of included patients ranged from 3 to 61 years. Overall, ages were reported for 65 of 74 (87.8%) patients across all seven studies. The mean age across all patients was 37 years. The pooled distribution of the included patients’ etiologies of septal perforation were as follows: 27 of 74 (36.5%) patients received prior surgery or septoplasty, 12 of 74 (16.2%) patients had trauma-related septal perforation (including one patient from a gunshot wound), 8 of 74 (10.8%) patients had septal perforations related to cocaine use, 7 of 74 (9.5%) patients had a septal infection or abscess, 5 of 74 (6.8%) patients had septal perforations related to nasal decongestant use, 2 of 74 (2.7%) patients had septal perforations secondary to rheumatologic conditions, 1 of 74 (1.4%) patient suffered a perforation due to cauterization of the nasal septum, 10 of 74 (13.5%) patients had an idiopathic cause of septal perforation and no etiology was reported for 7 of 74 (9.5%) patients. Certain patients were reported to have greater than one etiology for their nasal septal perforation.

The presence or absence of symptoms for patients included in this review were pooled and reported for 51 of 74 (68.9%) individual patients in the included studies. Of these, 37 of 51 (72.5%) patients experienced crusting, 33 of 51 (65%) patients experienced obstruction, 18 of 51 (35.3%) patients experienced bleeding or epistaxis, 17 of 51 (33.3%) patients experienced whistling, and 4 of 51 (8%) patients experienced malodor. Some patients included in this review presented with a combination of the aforementioned symptoms.

Reconstruction Trends
All included studies used a PDS plate for their nasal septum perforation reconstruction. All studies reported using other materials in addition to the PDS plate for their repair. Four of seven studies also used a temporalis fascia graft, 2 of 7 studies used autologous cartilage grafts and 3 of 7 studies used a variety of other reconstruction materials, including acellular dermal matrices with tissue and mucoperichondrial rotation flaps (Table 2). Twenty-two of 74 (29.7%) patients, in three of seven studies, underwent surgery involving both a PDS plate and local rotation flaps. One study reported the use of nasal septal flaps on five patients. Another two studies involved a technique that used mucoperichondrial flaps over PDS plates on a total of 17 patients.

Patient Outcomes
The majority of patients were followed-up around the 4 to 6 months postoperatively. The maximum time for follow-up was 5 years and 8 months postoperatively. All included studies reported septal perforation closure rates greater than 80% with the PDS plate repair. Three of seven studies reported 100% septal perforation closure rates. Pooled analysis of the reconstruction trends across all included patients demonstrated closure rates of 91% (48/53) for temporalis fascia and PDS, 88% (14/16) for autologous cartilage grafts and PDS, 100% (6/6) for acellular dermal matrix with tissue (via inferior turbinate flap or temporalis fascia) and PDS, and 86% (6/7) for mucoperichondrial rotation flaps with tissue (via temporalis fascia) and PDS. Four of seven studies reported that no patients had any complications following surgery. Three of seven studies reported complications, including temporal scalp seroma, temporal pain, and local infection.

Discussion
All studies in this review reported septal perforation closure rates of at least 80%. The different materials used in conjunction with PDS plates in the included studies, all contributed to high rates of successful nasal septum perforation closure. The majority (four of seven) of studies did not report any complications following nasal septal repair with PDS plate. In total, 67 of 74 (90.5%) patients in the included studies reported closure of their septal perforation. As an innovative technique for repairing nasal septal perforations, these results are promising. However, due to the sparse literature on the role of PDS plates in nasal septum perforation reconstruction, further research is needed to demonstrate its utility and to suggest its routine use.

In most reconstructive surgeries, the use of autologous tissue is preferred. However, due to factors, such as the limited amount of suitable, high-quality cartilage available at donor sites, synthetic materials are often used in septal reconstructive surgeries. As has been shown, PDS plates appear to be a useful material for reconstructing nasal septal perforations. From a physiologic perspective, PDS plates aid septal perforation closure by acting as a scaffold to support other human tissue (cartilage, fascia, etc.) which encourages structural stability and mucosalization of the nasal septum. Hence, PDS plates may act as an important cartilage replacement in the context of nasal septum perforations. They degrade spontaneously without impacting the surrounding tissue, and they serve to guide regenerating chondrocytes over the perforation to avoid the formation of deviated cartilage. Furthermore, when cartilage and PDS plate are used simultaneously, the regenerated tissue has been shown to be stronger than had the perforation been repaired solely with cartilage.

Notably, three studies included the use of temporoparietal fascia (TPF) grafting in addition to PDS plates for reconstruction of the nasal septum. TPF grafts have demonstrated a high success rate for other reconstructive procedures. The histological properties of the TPF are thought to contribute to the successful use of PDS plates as a scaffold/cartilage replacement to enhance cellular regeneration, migration, and mucosalization.

Other techniques of nasal septal reconstruction have been shown to have significantly more complications than the use of PDS plates. For example, while rotational and advancement flaps have been shown to be efficacious in nasal septal repair, the pooled data on PDS plates presented in this review report lower complication rates compared with similar studies pertaining to rotational or advancement flaps. Further, using free flaps for nasal septal reconstruction have also been shown...
Table 1 Included studies' demographics

<table>
<thead>
<tr>
<th>Study</th>
<th>Year published</th>
<th>Country published</th>
<th>Number of patients</th>
<th>Number of females n (%)</th>
<th>Number of males n (%)</th>
<th>Age of patients (y)</th>
<th>Number of centers</th>
<th>Number of surgeons</th>
<th>Type of injury</th>
<th>Patient symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morse et al⁵</td>
<td>2019</td>
<td>The United States</td>
<td>17</td>
<td>12 (70.59)</td>
<td>5 (29.41)</td>
<td>45</td>
<td>1</td>
<td>1</td>
<td>Unknown/idiopathic (35%), rheumatologic (12%), prior septoplasty (53%)</td>
<td>Nasal crusting, whistling, nasal obstruction, epistaxis</td>
</tr>
<tr>
<td>Epprecht et al⁷</td>
<td>2017</td>
<td>Switzerland</td>
<td>20</td>
<td>13 (65)</td>
<td>7 (35)</td>
<td>33</td>
<td>1</td>
<td>N/R</td>
<td>Previous operation (45%), postraumatic (5%), cocaine (10%), infection (5%), idiopathic (15%)</td>
<td>Nasal crusting, obstruction, bleeding, whistling</td>
</tr>
<tr>
<td>Hughes and Paun⁵</td>
<td>2012</td>
<td>The United Kingdom</td>
<td>10</td>
<td>1 (10)</td>
<td>9 (90)</td>
<td>27–58</td>
<td>1</td>
<td>1</td>
<td>Cocaine (50%), postseptoplasty (30%), cauterization (10%), idiopathic (10%)</td>
<td>N/R</td>
</tr>
<tr>
<td>Sand et al¹⁰</td>
<td>2015</td>
<td>The United States</td>
<td>7</td>
<td>15 (60)</td>
<td>10 (40)</td>
<td>21–61</td>
<td>1</td>
<td>1</td>
<td>N/R</td>
<td>N/R</td>
</tr>
<tr>
<td>Mirzai et al¹¹</td>
<td>2021</td>
<td>The United States</td>
<td>5</td>
<td>3 (60)</td>
<td>2 (40)</td>
<td>22–56</td>
<td>1</td>
<td>1</td>
<td>Previous septoplasty (80%), nasal decongestant use (60%), Nasal trauma (60%)</td>
<td>Nasal obstruction, whistling, epistaxis, crusting, malodor</td>
</tr>
<tr>
<td>Menger et al⁹</td>
<td>2008</td>
<td>The Netherlands</td>
<td>6</td>
<td>1 (16.67)</td>
<td>5 (83.33)</td>
<td>3–11</td>
<td>1</td>
<td>1</td>
<td>Septal abscess (100%)</td>
<td>Obstruction</td>
</tr>
<tr>
<td>Flavill and Gilmore⁸</td>
<td>2014</td>
<td>The United States</td>
<td>9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
<td>1</td>
<td>Trauma (33%), surgery (23%), cocaine (11%), oxymetazoline (22%), gunshot wound (11%)</td>
<td>Nasal crusting, discomfort, obstruction, epistaxis, whistling</td>
</tr>
</tbody>
</table>

Abbreviations: N/A, not available; N/R, not reported.
Table 2 Included studies’ reconstruction techniques and outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Year published</th>
<th>Perforation size range (mm)</th>
<th>Plate sizes used</th>
<th>Other materials for reconstruction</th>
<th>Follow-up time (mo)</th>
<th>Outcome (% of closures)</th>
<th>Outcome (no. of closures)</th>
<th>Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirzai et al¹¹</td>
<td>2021</td>
<td>10 × 25–20 × 25</td>
<td>1-cm larger than nasal septal perforation</td>
<td>Inferior turbinate flap, acellular dermal matrix</td>
<td>6</td>
<td>100</td>
<td>5</td>
<td>None</td>
</tr>
<tr>
<td>Morse et al⁶</td>
<td>2019</td>
<td>2 × 2–14 × 30</td>
<td>0.15-mm thick</td>
<td>Temporoparietal fascia graft</td>
<td>8.7</td>
<td>88</td>
<td>15</td>
<td>Temporal pain (6%), scalp seroma (6%)</td>
</tr>
<tr>
<td>Epprecht et al⁷</td>
<td>2017</td>
<td>5 × 5–40 × 30</td>
<td>0.25-mm thick</td>
<td>Plate enveloped by temporoparietal fascia</td>
<td>12</td>
<td>90</td>
<td>18</td>
<td>Temporal pain (5%), Infection (5%)</td>
</tr>
<tr>
<td>Sand et al¹⁰</td>
<td>2015</td>
<td>5 × 20–20 > 20</td>
<td>0.15, 0.25, and 0.55 mm</td>
<td>Temporalis fascia, mucoperichondrial rotation flaps.</td>
<td>6.6</td>
<td>86</td>
<td>6</td>
<td>N/R</td>
</tr>
<tr>
<td>Flavill and Gilmore⁸</td>
<td>2014</td>
<td>8 × 10–20 × 25</td>
<td>0.25-mm thick</td>
<td>Deep temporal fascia, temporoparietal fascia, acellular dermal matrix</td>
<td>6–50</td>
<td>100</td>
<td>9</td>
<td>None</td>
</tr>
<tr>
<td>Hughes and Paun⁷</td>
<td>2012</td>
<td>7–16</td>
<td>0.15–, 0.25–, and 0.5–mm thick</td>
<td>Autologous cartilage interpositional grafts</td>
<td>10–68</td>
<td>80</td>
<td>8</td>
<td>Mild postoperative inflammation (10%)</td>
</tr>
<tr>
<td>Menger et al⁹</td>
<td>2008</td>
<td>15 × 23–25 × 36</td>
<td>0.15 mm × 50 mm × 40 mm plates</td>
<td>Autologous cartilage graft of auricle or rib</td>
<td>4–17</td>
<td>100</td>
<td>6</td>
<td>None</td>
</tr>
</tbody>
</table>

Abbreviation: N/R, not reported.

Conclusion

This systematic review ultimately included seven studies representing 74 patients who received nasal septal perforation reconstruction with a PDS plate. All included studies met the inclusion criteria and demonstrated the efficacy of PDS plates for the reconstruction of nasal septal perforations. The review also highlighted the limitations and future directions for this surgical technique.

Limitations and Future Directions

There are several limitations associated with this review. First, the scant number of studies on the topic negates the ability to draw definitive conclusions. Second, the outcomes reported in the included studies are often not comparable, making it challenging to evaluate the efficacy of different PDS plates. Third, the follow-up periods vary widely, which can affect the interpretation of outcomes. Finally, the included studies represent a relatively small number of patients, which limits the generalizability of the findings.

Future research could investigate larger cohorts of patients to evaluate the long-term outcomes and complications associated with PDS plate reconstruction. Additionally, cost analysis and patient-reported outcomes should be evaluated to determine the cost-effectiveness and patient satisfaction of this reconstructive method. Finally, future studies could also investigate the use of alternative materials or techniques to improve PDS plate outcomes.

Conclusion

To conclude, nasal septal perforation reconstruction with PDS plates is a viable option for repairing nasal septal perforations. Future studies should investigate the long-term outcomes and complications associated with PDS plate reconstruction to determine its clinical utility.
reported closure rates of at least 80%. The use of PDS plates is an innovative and promising approach to repairing septal perforations that has demonstrated positive outcomes. Future studies should continue to evaluate the long-term safety and outcomes of using PDS plates on larger cohorts of patients with nasal septum perforations.

Funding
None.

Conflict of Interest
None declared.

References
27. Fuller JC, Levesque PA, Lindsay RW. Polydioxanone plates are safe and effective for L-strut support in functional septorhinoplasty. Laryngoscope 2017;127(12):2725–2730