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Abstract Background Food practice plays an important role in health. Food practice data
collected in daily living settings can inform clinical decisions. However, integrating such
data into clinical decision-making is burdensome for both clinicians and patients,
resulting in poor adherence and limited utilization. Automation offers benefits in this
regard, minimizing this burden resulting in a better fit with a patient’s daily living
routines, and creating opportunities for better integration into clinical workflow.
Although the literature on patient-generated health data (PGHD) can serve as a starting
point for the automation of food practice data, more diverse characteristics of food
practice data provide additional challenges.
Objectives We describe a series of steps for integrating food practices into clinical
decision-making. These steps include the following: (1) sensing food practice; (2)
capturing food practice data; (3) representing food practice; (4) reflecting the
information to the patient; (5) incorporating data into the EHR; (6) presenting
contextualized food practice information to clinicians; and (7) integrating food practice
into clinical decision-making.
Methods We elaborate on automation opportunities and challenges in each step,
providing a summary visualization of the flow of food practice-related data from daily
living settings to clinical settings.
Results We propose four implications of automating food practice hereinafter. First,
there aremultiple ways of automating workflow related to food practice. Second, steps
may occur in daily living and others in clinical settings. Food practice data and the
necessary contextual information should be integrated into clinical decision-making to
enable action. Third, as accuracy becomes important for food practice data, macrolevel
data may have advantages over microlevel data in some situations. Fourth, relevant
systems should be designed to eliminate disparities in leveraging food practice data.
Conclusion Our work confirms previously developed recommendations in the con-
text of PGHD work and provides additional specificity on how these recommendations
apply to food practice.
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Background and Significance

Food practice is a complex set of routines that include
shopping for, growing, cooking, eating, and disposing of
food. Although the scope of food practice could include
industrial activities, in this paper, we focus on individual
food practices. Individual food practices play a critical role in
management of chronic medical conditions (e.g., diabetes,1

anticoagulation therapy,2 and heart failure3). Data on food
practice are often collected by patients as part of chronic
disease management. These data are instances of “observa-
tions of daily living”4 or patient-generated health data
(PGHD). The term PGHD is used in this work to describe
both types of data collection. PGHD refers to health-related
data (not necessarily limited to food practice) that is created,
recorded, or gathered by patients, family members, or care-
givers.5Key features of food practices as PGHD are as follows:
(1) the patient captures the data; (2) the data are obtained
outside of the clinical setting; and (3) the data can be
collected longitudinally and with high frequency. Potential
benefits of such data include insight into a patient’s food
practices, informed revision of care plans, and reduction of
unnecessary clinic visits. Data related to individual food
practice is not as structured as many PGHD (e.g., blood
pressure, mood, or weight) which can be easily quantified.
As technology and patient ergonomics approaches continue
to mature,6 and patients become more actively engaged in
producing PGHD, the amount of food practice data generated
grows substantially.6 Integrating data on food practice into
the electronic health records (EHRs) can lead to more indi-
vidualized therapy plans and better patient outcomes.7

The challenges highlighted in the literature related to
capturing and utilizing PGHD (technical, social, and organi-
zational, broadly categorized8–11) are also valid for, and
relevant to food practice data. These challenges, however,
can add significant burden to patient12 and clinician.13 As a
result, integration of food practice data into the EHRhas been
limited, and decision support capabilities around food prac-
tice data are generally basic.9 This gap in fully individualizing
food practice presents the opportunity to identify a scheme
to automate such data. Identifying the necessary steps for
integrating food into clinical decisions can serve as the basis
for developing interventions for automating these steps.
Workflow automation can facilitate capturing food practice
as a situated action14 and help clinicians and patients to
collaboratively identify social and environmental influences
on food practice.15 Workflow automation can also play a key
role in facilitating themanagement and presentation of these
data within the context of clinical care, allowing food prac-
tice data to become a part of the medical record and clinical
decision-making processes. Overall, workflowautomation of
food practice data stands to inform culturally appropriate
and individualized therapies.16

Broadly, workflow automation, which can be defined as
streamlining a sequence of activities through technology and
predefined rules,minimizes the overheadandwork associated
with regular and predictable data collection and analysis
processes.17,18 Workflow automation can be advantageous

as it can provide a temporal structure for food practice data.
Such structure can help to prompt in situ data collection and
ensure availability of the resulting information at the right
time. Automated collection of food data by patients has led to
the development of innovative input methods such as photo-
based food journaling,12,19 detection of chewing sounds,20,21

or the scanning of receipts22 or barcodes. We examine here,
some of these roles for automation in expanding the base of
food practice data and additional steps in which automation
can play a constructive role. The purpose of this research is to
create a comprehensive roadmap for integrating information
about food practice into clinical decision-making and identi-
fying the associated challenges and opportunities with work-
flow automation in this domain.

Current Practice of Capturing Food
Practice Data

In the clinical setting, assessmentof foodpracticesvarywidely
between institutions and clinicians but often include a brief
nutrition history or abbreviated food frequency question-
naires.23 These instruments elicit questions to assess daily
food habits and intake of a finite selection of foods.24 Themost
popular instruments arequestionnaires related to the intakeof
high saturated fat and high-fiber foods. Although useful in
population research, these instruments lack the ability to
accurately estimate nutrient intake and detect changes in an
individual’s dietary habits.25Recently, theDietary Risk Score, a
9-item survey for patients, was significantly correlated with
the Healthy Eating Index-2015, a 160-item food frequency
questionnaire. The Dietary Risk Score is useful in identifying
patients with self-reported suboptimal intake; however, its
effectiveness in the clinical setting has not been assessed.26

Many instruments requiring 24-hour recall were designed to
assess individual dietary intake with some requiring a mini-
mum of 3 days of recorded data. The AutomatedMultiple Pass
method (AMPM) relies on administration by trained person-
nel, andheavilyonpatient literacy level,memory, andability to
estimate portion sizes.27 The AMPM assesses 24-hour dietary
intake with limited provider burden but requires motivated
participants and tends to underreport energy and protein
intake for those who are obese.28

Other tracking methods, such as food records, are
intended to be completed in real time and have a greater
potential for accuracy, especially when foods are weighed
andmeasured prior to consumption. This diligence, however,
may lead to changes in the intake of food but can be used as a
behavioral intervention to encourage awareness of eating
patterns. However, the accuracy of records can be adversely
affected if proper objective measurement is not feasible.

Workflow for Integrating Food Practice in
Clinical Decision-Making

Seamless integration of food practice into clinical decision-
making can improve health outcomes, resulting improved
clinician–patient communication29–35 and the development
of more individualized therapy plans.36–38 We identified
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important steps for integrating food practice into decision-
making (►Fig. 1) based on a review of the literature.39–42

Specifically, we used a collaborative inquiry among the mem-
bers of our multidisciplinary research team about where food
practice–related information is stored at each step, how
automation might work to transform this information, and
what influence(s) the automation might have on and for
various stakeholders in the overall clinical decision-making
process. Our orienting literature included articles spanning
health informatics, human factors engineering, information
sciences and nutrition sciences. Our overall findings from this
reviewwere that automatingworkflowat each step in the food
practice clinical data pipeline is possible. Workflow automa-
tion canbebeneficial despite somebarriers such as theneed to
ensure smooth transitions from one step to another.43,44

We use the example of prediabetesmanagement to better
explain workflow automation opportunities to integrate
food practice in clinical decision-making. Prediabetes occurs
when blood glucose levels are elevated but not high enough
for a diagnosis of type-2 diabetes. When, on multiple occa-
sions, a patient has a fasting blood glucose between 100 and
125mg/dL or a hemoglobin A1C level between 5.7 and 6.4%, a
diagnosis of prediabetes can be made.45 It is estimated, that
between 2013 and 2016, 33% of adults in the United States
had prediabetes and 12% had type-2 diabetes.46 Of those
diagnosed with prediabetes, up to 41% are expected to

progress to type-2 diabetes mellitus within the next 7.5
years.47 Since many patients with prediabetic signs are
overweight or obese, the primary recommendation for treat-
ment is lifestyle intervention to promote loss and mainte-
nance of 7% of initial body weight.48 Primary care has been
identified as an ideal setting for initiating lifestyle interven-
tions that promote weight management, like healthy eat-
ing.49 Primary care providers (PCPs) are ideally positioned to
provide nutritional support to patients, as they represent the
initial point of contact within the health care system and
their nutrition care is held in high regard by patients.50

Food practice information can provide clinicians with
effective, individualized lifestyle intervention at the initial
point of contact. Specific to prediabetes, food practice infor-
mation could suggest effective patient goals such as decreased
intake of sugar, sweetened beverages, fast food, increased
intake of nonstarchy vegetables, or proper meal spacing.

Sensing Food Practice
Sensing food practice refers to detecting the occurrence of a
food practice. The use of automated technologies to record
instances of and details about food consumption is one of the
most well-established applications of workflow automation
to reduce the patient burden associated with keeping diaries
and increase adherence to food-related data collection needs.
These approaches utilize a variety of sensors either to log

Fig. 1 Workflow for integrating food practice in clinical decision-making. EHR, electronic health record; PGHD, patient-generated health data.
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instances of eating (frequency and duration) or to attempt to
infer the content of snacks and meals (e.g., high carbohydrate
foods). A comprehensive review of research in wearable food
intake monitoring51 have provided an overview of different
applications of food intake monitoring (i.e., caloric intake and
eating behavior), sensing of different food intake mechanisms
(i.e., biting, chewing, and swallowing), and various approaches
for sensing (e.g., acoustic, visual/camera-based techniques, use
of inertial sensors like gyroscopes and accelerometers, piezo-
electric sensing of chewing and swallowing, and detection via
other indirect biosignals). Some of the outstanding challenges
identified in the large-scale deployment of these kinds of
sensing techniques, including the comfort and practicality of
wearing various sensors outside of a laboratory environment
and accurate classification of food type, portion size, ingredi-
ent composition, and nutritional content.

Recent examples of innovative sensor-based foodmonitor-
ing includewearabledevices that fusemultiple sensor streams
(camera/visual, inertial sensors, proximity sensors, and vibra-
tion sensing) in an eyeglass-like form,52 installation of a
proximity sensor in a necklace-like mount to detect chew-
ing,53 augmentation of an eating utensil with photocells,
inertial sensors, and resistance sensing (to measure the con-
ductance of different food items),54 and the use of wrist-worn
inertial sensors to detect hand andarmmovements associated
with lifting food to the mouth.55 Many of these experiments
are only at the prototype or proof-of-concept stage.

The accuracy of sensing technologies for detecting, for
example, instances of chewing is reported to range from
76.1% accuracy using inertial (accelerometer based) detec-
tion to 95.3% when using proximity sensors. Studies con-
ducted in the field, however, have resulted in lower overall
detection accuracy rates.53 Some of the key challenges in
detecting events include wearability and comfort, differen-
tiation between eating and drinking episodes, and mobility
confounds (wearability necessitates real-world use which
inevitably leads to non–food-related head movements).56–58

Sensor-based approaches can either be employed as a
form of semiautomatic data collection59 (i.e., to log instances
of eating that are intended to be annotated using human
computation approaches),60 or retrospectively recorded in
more detail (manually) by the patient (e.g.,54,61–63); or as
fully automatic food intake sensing platforms (i.e., as a
complete substitute for manual data entry). Automatic jour-
naling at a coarse level of granularity (e.g., logging instances
or durations of eating episodes) is still muchmore robust and
reliable than attempting to infer specific food content and
portion size. Given the active research in these areas, these
technologies may be ready for more broad-based deploy-
ment and real-world use in the next several years.

In cases of prediabetes, sensor systems canprovide insight
into daily eating habits that provide opportunities for inter-
vention. Continuous blood glucose monitoring can create an
objective record of the impact of meal timing and food
choices given a particular patient’s metabolism and pancre-
atic function. Increased awareness of these measurements
can serve as the basis for constructive feedback on eating
habits, including contextualized education on the effect of

meal timing, eating practices, and glycemic load on blood
glucose levels (see also “Reflecting Food Practice Information
Back to the Patient”).

Capturing Food Practice Data
Capturing the food consumption data is a common focus of
self-tracking health applications on mobile devices.64,65

These applications range from the direct translation of
validated clinical instruments to elaborate, multimedia jour-
naling platforms that augment the food-tracking/logging
experience to increase accuracy, adherence, or patient en-
gagement. Computer-aided diaries (e.g., AMPM66) that add
additional structure and detail can improve the accuracy of
patient-reported dietary food recall, with resulting energy
intake computations varying less than 3% from the gold
standard of total energy expenditure based on the doubly
labeledwater technique.67However, these types of in-depth,
computer-based dietary recall techniques still pose signifi-
cant time and burden on respondents and clinicians.

To address these data collection burdens, mobile food track-
ing research have experimented with streamlined data entry.
For example, using light-weight interface designs inspired by
social media platforms (e.g., the “þ1” design pattern for
reentering or “up-voting” a prior entry).68 Other applications
haveadopted interfaces thatallowquick loggingof store-bought
food items using Universal Product Code (UPC) scanning.69,70

The main limitation of barcode-scanning applications is that
they only accelerate data entry for selected packaged foods
purchased and consumed from grocery or convenience stores.

Photography12 and video71have also been used to stream-
line and enrich the data collection experience. In some cases,
these multimedia captures are used as “placeholders” for post
hoc elaboration by the patient after the meal.63 In other
instances, photographs and media artifacts are shared with
others, either to crowdsource food identification and tagging
by crowdworkers60 or nutritionists,72 or as conversational
tokens on social media platforms, like Instagram,73 to invoke
social support asakeymotivatorandadherence reinforcement
mechanism. Recently, multimedia data were processed using
computer vision techniques to accomplish automatic food and
portion size recognition, albeit with limited accuracy.74 These
multimodal techniques show promise but are still at a rela-
tively early stage of development and have not been widely
adopted in commercial food-tracking applications.

Instead of focusing solely on streamlining and automation,
some food journaling applications have increased user en-
gagement by incorporating techniques associated with gami-
fication, such as providing challenges to motivate continued
adherence to data collection75 or rewards for successfully
meeting food journaling benchmarks.76 Nudges77 can be a
powerful behavioral modification and habit formation tech-
niquewhich is potentially useful for helping patients internal-
ize food journaling practice. In contrast, the implicit or
inadvertent use of “negative nudges” in the design of popular
food-tracking applications, have been shown to deter long-
term use and lower adherence to computer-assisted data
collection of food intake.78 For example, issues include the
differential burden of entering different food types, with less
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healthy meals often incurring more overhead to track, diffi-
culty in “recovering” missed data after a lapse in data entry,
and stigma associated with use of a food tracking application.

Patients with prediabetes can benefit from workflow
automation in collecting data (along with needed context
information). For example, carbohydrate content of con-
sumed (or food to be consumed) could be captured and
compared with the patient’s personal goals. Furthermore,
positive feedbackcould be provided formeeting dietary goals
such as adequate intake of fiber. In this paper, we define
context as a manifestation of the characteristics of any
environment or situation in which the user is embedded.
Dimensions of context may include physical (e.g., location),
organizational (the user’s job hours), social (friends), cultural
(food consumption habits), and temporal (daily or weekly)
routines.

Representing Food Practice
Ontologies can help represent knowledge about food prac-
tice, organize relevant information, enable information shar-
ing, and guide the subsequent steps shown in ►Fig. 1.79,80

Ontologies are particularly successful for managing hetero-
geneous information (structured, semistructured, and un-
structured) drawn from different resources. Ontologies are
typically modeled using an editor (e.g., Protege81) that
provide a graphical representation of the phenomena of
interest, such as food practice. Reusability is another advan-
tage of ontologies. Well-designed ontologies reuse, as appro-
priate, terms from other well-established ontologies to
eliminate duplication. This enables integration of otherwise
disparate ontologies (and their associated data) across
domains.82 Querying can then occur across datasets that
use a common vocabulary. Ontologies facilitate many prac-
tical applications potentially relevant to representing food
practice, such as annotating entities or items, conducting
semantic similarity analysis,83 or even finding unexpected
patterns in streams of data (e.g., food logs).

Ontologies support interoperability and can accelerate
the workflow automations illustrated in ►Fig. 1. Ontologies
allow for representations that can be interpreted by com-
puters. Such representations allow for harmonizing hetero-
geneous food data and using the results to provide contextual
explanations for other clinical data. These transformations
can either be enacted algorithmically (e.g., as the output of
automated data importation and processing scripts) or iden-
tified through automation services to prompt opportunities
for human-driven alignment of various unstructured or
novel data into more clearly defined categories and repre-
sentations. Once data are organized into these ontologies, it
becomes possible to link information to subsequent visual-
izations, integrate information into formalized EHR systems,
and create decision support triggers for clinicians and
patients in the steps described in ►Fig. 1.

Key steps necessary for developing a food ontology include
the following: (1) identifying the scope and purpose of an
ontology (i.e., is it for a specific health condition such as
prediabetes, or it is for general wellness); (2) identifying and
importing appropriate classes from existing reference ontol-

ogies (e.g., FOBI,84 FoodOn,80 and others85,86); and (3) creating
new classes/relationships for any conceptualization required
for models and themes within the previously identified scope
andpurposebutnot found inexistingontologies. Ontologies to
facilitate the workflow shown in►Fig. 1 should be able to (1)
represent data related to food practice routines (e.g., buying
soda from vending machines) and contexts (e.g., time of
day), (2) utilize data elements (e.g., type of food and
ingredients) that can later be aggregated with clinical
data, (3) be reusable and interoperable with other ontolo-
gies, and (4) facilitate automated functions like personal-
ized food recommendations.

Reflecting Food Practice Information Back to the
Patient
As patients collect data on their food practice, reflecting
information derived by the data (e.g., how much soda does
the patient purchase? Is there a pattern to cravings for, and
purchases of soda?) to the patient in a way that is congruent
with their health and information literacy, can be a source of
useful feedback.87Such feedbackgivespatientsanopportunity
to adjust both their foodconsumptionbehaviors and theirdata
collection practices. Interactive visualizations that leverage
data science and visual analytics can be effective in mitigating
issuesof informationoverload88andcan facilitateunderstand-
ing food practice information by lay people. Furthermore, the
timing and context inwhich these data aremade available, can
have an impact on the extent to which they drive insight and
effective action on the patient’s behalf.89

The science behind interactive visualizations integrates
concepts and methods from machine learning, health infor-
matics, human factors engineering, and cognitive psycholo-
gy to aid interpretation of complex data.88,90However, visual
analytics has not been extensively studied in the context of
heterogeneous food practice.

Future studies in this area to automate workflow should
focus on integrating food practice information into an indi-
vidual’s daily routine and providing information to the
patient at the “right” time, that is, when the patient needs
to make a decision (i.e., not too late or not too early).
Predictive models are also needed to anticipate when a
patient might need such information.

In the context of prediabetes, effective workflow automa-
tioncould leveragesmartphonesensordata, globalpositioning
system (GPS)-based data indicating arrival at or near eating
establishments, and information storedonapatient’s calendar
to anticipate moments in which notifications about current
blood glucose status (if available) and past food consumption
choices resulted in different kinds of glycemic control out-
comes. Sociallyandcognitivelyopportunemoments topresent
postprandial meal summaries and prompts for manual anno-
tation can also increase patient engagementwith the effects of
their food consumption choices.

Incorporating Data into the Electronic Health Record
Various food practice data could be incorporated into the
EHR to support clinical decision-making. Data elements
might include data generated from currently used self-
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reported food practice questionnaires23,24 and surveys26; for
detailed food consumption records in textual64,65,68 or pho-
tographic formats12,60 (with the potential of data organized
on a meal-by-meal basis or aggregated to provide an over-
view of dietary macronutrient content), information about
meal duration and frequency,52–55 and summaries of food
purchasing behavior.68,69 Integration of food practice data
into the EHR is dependent on effectively bridging among a
variety of platforms, standards, and methods. A literature
review by Tiase et al91 reported 19 studies that integrated
PGHD into EHRs. Although these studies did not focus
specifically on food, food practice can use the same plat-
forms, standards, and methods previously developed for
PGHD (e.g., biometric and patient activity, questionnaires
and surveys, and health history) as a starting point. However,
given the potentially granular nature of food practice data
and wide variety of data types, this kind of integration
represents another significant opportunity for workflow
automation to play a central role. Food practice data can
be transferred actively by the patient into the EHR or
passively by uploading automatically without patient effort.
Passive transfer would minimize patient burden and better
automate workflow. Workflow automation can also be
employed tominimize provider work which includes linking
data to the correct patient record or matching it to the
patient ID. Passive delivery of food practice data to the
EHR would also facilitate efficient provider workflows.92

Developer platforms like the Apple HealthKit93 and techni-
cal information exchange mechanisms like application pro-
gramming interfaces (APIs) and Fast Healthcare
Interoperability Resources (FHIR)94 are essential for incorpo-
rating food practice data into the EHR. However, these more
general-purpose platforms and programming standards will
likely need to be enhanced to better accommodate character-
istics specific to food practice data. Adoption of new interop-
erability standards and standardized APIs to simplify
integration may help decrease the EHR delivery burden and
enhance the long-term sustainability of food practice initia-
tives. Based on our prior work3,95 and the PGHD literature, we
identified the following five concerns related to leveraging
technical infrastructures for EHR integration: (1) addressing
connectivity issues, both in terms of information privacy and
availability of bandwidth for health data on patients’ devices
anddataplans; (2)matching collected foodpractice data to the
patient’s EHR; (3) establishing consensus on legal issues (e.g.,
whohas access to thedata orwho is responsible enteringdata)
and liabilities (responsibility of the providers with the data);
(4) developing validated intelligent filtering, trending, and
alerting algorithms; (5) developing a digital ecosystem for
food practice data. Research advances across these concerns
will be key to automating the process of incorporating food
practice data into the EHR.

Presenting Contextualized Food Practice Data to
Clinicians
Food practice data alone can help providers individualize
therapy plans. However, food practice data (e.g., frequency of
restaurant visits) can be rendered even more effective when

complementing clinical data (e.g., laboratory results) in
EHRs. Clinical data can be better understood and interpreted
using food practice data. Such blending of data enriches
computerized decision support. Moreover, food–drug inter-
actions can be better managed in conversations between
providers and patients through shared decision-makingwith
this food practice data.96

In the case of prediabetes management, patients with
impaired fasting glucose levels may benefit from assessment
of meal timing and diet composition, in light of laboratory-
produced blood glucose and A1C measurements and prior
dietary recommendations. However, this kind of seamless
blending of clinical history, laboratory data, and PGHD require
interoperability between food and existing clinical data in the
EHR. This information is enhanced when automation can
extract the relevant information across these types of data
and create a legible and contextually relevant visualization of
how they relate to one another. Currently proposed architec-
tures focus on incorporating data into EHRs97; however,
blending food practice and clinical data require further work
in developing standards for food–clinical data interoperability
and in developing intuitive visualizations to show these data
side-by-side in contextually relevant ways.

Presenting numerical data (about food practice only or
about the blend of food practice and clinical data), enriched
by contextual cues (e.g., what is the source of this data?
When, where, and by whom was it collected?) and qualita-
tive narratives, can inform clinical decision-making and
improve the involvement of patients.8,98Automation, includ-
ing the algorithmic selection of the data that will comprise
these multimodal narratives and how they will be displayed
to clinicians, is essential. Challenges and barriers reported in
presenting PGHD are also valid for food practice data. These
challenges include the lack of actionable data, reliability and
accuracy of the data, workflow disruption, technical issues,
and a lack of incentives.8,98,99 Furthermore, food practice
data need to be summarized, so that patterns can be easily
visualized by health care professionals who will eventually
need to rapid sense making and decision-making.100,101

Perceived or objective problems with the reliability and
accuracy of data can affect use of food practice data. Higher
reliabilityandaccuracyofdatamaycomeat thecostof the level
of data (i.e., more accurate data may arrive less frequently
while more frequent data may be noisier). Any workflow
automation should account for trade-offs in maximizing legi-
bility, reliability, and accuracy. In the end, the sources, and
measures of robustness of data should be honestly communi-
cated to providers to establish trust in the system.

The Ultimate Goal: Integrating Food Practice into
Clinical Decision-Making
Food practice information is most useful when it can be
seamlessly integrated into clinical decision-making. Work-
flow automation interventions related to food practices
should not merely provide food information but should
facilitate action (e.g., determining interventions, initiating
provider referrals, or facilitating coordination acrossmedical
disciplines). In some cases, clinical technology platforms
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might automatically detect relationships between clinical
and food practice data in the EHR. For example, the platform
may use rule-based algorithms to prompt the care provider
to review food consumption patterns provided by a patient
(e.g., frequent high-fat and high-carbohydrate meals from
fast-food restaurants) that might explain abnormal labora-
tory results (e.g., high low-density lipoprotein [LDL]). This
automated recommendationmight thenprovide the primary
care provider with resources and potential interventions
that would aid in discussing and potentially improving the
quality of the patient’s food consumption.

However, this “best case” example of workflow automa-
tion of food practice data into clinical practice is still some-
what of a future vision for technology’s role in clinical
decision-making. Integration of any PGHD (not just food
practice data) into the EHRs has been extremely limited to
date, and decision support capabilities are, for themost part,
basic.9 Several clinical workflow automation-related issues
have previously been identified102 for utilizing PGHD in the
clinical decision-making process which can also be valid for
food practice data. Relevant systematic interventions can
benefit from codesign approaches103,104 that leverage the
strengths of computational and clinicians’ pattern recogni-
tion expertise105 and support the optimal temporal order of
user activities.

While automating workflow to integrate food practice
into clinical decision-making can lead to a broader use of
food practice data, the presence or absence of automation is
not a binary variable. In many applications, some of the
activities are automated, while others are not. For example,
many decision-support tools such as dashboards, reminders,
and alerts can automate particular activities, assuming that
they will be designed to fit the clinical workflow. Additional
automated decision support interventions based onmachine
learning approaches have been developed. However, their
consistency with clinical guidelines is currently not suffi-
cient to make them feasible for daily use.106

The patients’ role in these approaches is not necessarily
limited to providing data. There are also opportunities to
empower patients, that is, encouraging a more active role in
shared decision-making, and cocreation of therapy plans
that are informed by food practice data. We also believe
that this kind of patient empowerment will improve provid-
er–patient communication and collaboration.107–109

Discussion

In this work, we outlined a roadmap to integrate food
practice data into clinical decision-making. We identify
some of the critical steps for integration and explain how
these steps can be automated. Automation is particularly
critical for food practice assessment, given the diverse char-
acteristics of food practice data and the inherent overhead in
collecting these data and incorporating them into existing,
highly structured EHR systems. There is no single pathway
for integrating automation in this domain. Automation can
be accomplished by aggregating multiple smaller informat-
ics interventions (e.g., self-tracking applications, APIs to

store, analyze, or visualize food practice data) or larger-scale,
centralized interventions, for example, the development of a
food information exchange system. Such an exchange might
connect food sources (e.g., restaurants and grocery stores)
directly to health care organizations for patient-level infor-
mation exchange. Workflow automation stands to reduce
the friction between each pair of transitions illustrated
in ►Fig. 1, encouraging collection of better, more robust
data, and enablingmore productive use of that data through-
out the health information systems pipeline, with the net
result of better clinical decision-making. The arrows in the
diagram also showwhere automation-driven feedback loops
might influence patient adherence to data collection and
prescribed treatments, and show the point at which clinical
decision-making can be informed through application of
these workplace automation techniques.

Despite many advantages of automation in integrating
food practice information into clinical decision-making,
some unintended consequences should also be examined.
For example, misrecognition of food items, a common prob-
lem with contemporary sensing and image recognition
technologies requires manual data correction, either by the
patient, clinician, or both. Cordeiro et al argued that full
automation might undermine the mindfulness benefit of
food journaling.12

►Fig. 1 highlights activities related to food practice and its
integration into clinical decision-making. Some of these
activities occur in the patient’s daily living and others in
clinical settings. Automation should be congruent with the
context in which the activity occurred. Connecting data col-
lected in daily living settings with clinical decision-making
maypresent challenges.7Aneffectivewayofovercoming these
challenges could include employing a participatory approach
when designing and implementing relevant informatics sys-
tems. Because the boundaries involve both settings, a diverse
set of users and stakeholders should be involved in codesign to
leverage all needed explicit and tacit knowledge104 in bridging
between theneeds/perspectivesof patients (and their proxies)
and clinicians.110Multidisciplinary research and design teams
are needed, given that each step in the workflow focuses on
different kinds of expertise and discipline.

Accuracy of the data are an important consideration for
the adoption of these kinds of systems by both clinicians and
patients.44,111 We posit that, counter intuitively, accuracy
can be improved by collecting food practice databased on
abstractions and aggregations of behavioral signals. For
example, microlevel data, such as the amount of protein
and fat content in each meal, may not be easily captured
accurately; however, by using currently available sensors,
accurate macrolevel data can be acquired about where the
patient shops for food (e.g., at a fast food restaurant versus in
a grocery store, differentiated using GPS location sensing) or
roughly what type of food is purchased (salad materials vs.
snacks using photographed receipts) or how it is cooked
(fried vs. boiled using kitchen sensors).We argue thatmacro-
or summary-level information (e.g., the types of restaurants
visited and types of food purchased at the grocery store)
might be sufficient inmany situations andwould be easier to
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integrate into action-oriented clinical decisions. Macrolevel
information can show overall food habits and be a predictor
of health outcomes.112

It is also essential that diversity, equity, and inclusion be a
part of the design and implementation of informatics inter-
ventions that integrate food practice information into clinical
decision-making. Food practices differ substantially across
racial, ethic, and socioeconomic boundaries, and algorithmic
interventions have been shown to (intentionally and unin-
tentionally) propagate various biases.113 Health systems and
policy makers must monitor food practice data usage and
benefits across populations and remain vigilant so that they
can change course as needed.

Conclusion

Our work confirms previously developed recommenda-
tions114 developed in the context of PGHD and provides
additional specificity about how these recommendations
apply to the domain of food practice. Employing frameworks
such as lived informatics115 will help us better study the
challenges and benefits of collecting and using food practice
data. Future research in this area should focus on more
specific conceptual, design, and methodological work that
highlights the unique features of food, human–food interac-
tion, and the implications of food practice data automation
on policy, research, health, and health care delivery. Specific
future research opportunities must include (1) developing
formative and summative evaluation frameworks and
approaches to assess the value of the integration of validating
the steps in►Fig. 1 and (2) pilot testing of the proposed steps
for specific conditions such as hypertension.

Clinical Relevance Statement

Food consumption plays a critical role in the health manage-
ment of various chronic conditions. Inadequate nutrition is
also a major contributor to delayed healing in acute con-
ditions. An important obstacle for integrating food-related
factors into clinical decisions for optimal therapy plans is
that health care providers (e.g., physicians and nurse practi-
tioners) may not have an accurate understanding of routines
related to and contexts surrounding patients’ food practices
(e.g., growing, shopping, cooking, and eating). We identified
important steps for integrating food practice into clinical
decision-making. Automating workflow at each of these
steps is possible and can be beneficial, despite some barriers.
Development of smooth transitions from one step to another
has the ability to improve the flow of patient care and,
eventually, better patient outcomes.

Multiple Choice Questions

1. Which of the following is one of the typical characteristics
of food practice data?
a. It can’t inform therapy plans
b. It is always well structured

c. Ontologies can be used to represent it
d. Typically, collected in specialized clinical settings

Correct Answer: The correct answer is option c.Ontologies
can help to represent knowledge about food practice,
organize relevant information, enable information sharing,
because ontologies are particularly successful formanaging
heterogeneous information (structured, semistructured,
and unstructured) drawn from different resources.

2. Which of the following statement related to challenges to
the integrating food practice data into clinical decision-
making is true?
a. Automation cannot be accomplished for the integration
b. If clinical workflow is not taken into account, the

integration can fail
c. Ontologies have inherent flaws to represent food prac-

tice knowledge
d. Current patents are obstacles for such integration

Correct Answer: The correct answer is option b. Several
clinical workflow related issues were identified for utiliz-
ing patient-generated health data (PGHD) in the clinical
decision-making process in the literature, which can also
be valid for food practice data.
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