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Introduction

Using data assimilation and machine learning1,2 combined
with physiological glucose-insulin models,3,4we have built a
glucose prediction system5 that is tuned to a patient’s own

physiology. The glucose-insulin system is represented as a
set of equations with physiological parameters that move
relatively slowly over time like insulin resistance and patient
states thatmove quickly in time like glucose level.Wewish to
compare different versions of the system for likely utility in
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Abstract Background It would be useful to be able to assess the utility of predictive models of
continuous values before clinical trials are performed.
Objective The aim of the study is to compare metrics to assess the potential clinical
utility of models that produce continuous value forecasts.
Methods We ran a set of data assimilation forecast algorithms on time series of
glucose measurements from neurological intensive care unit patients. We evaluated
the forecasts using four sets of metrics: glucose root mean square (RMS) error, a set of
metrics on a transformed glucose value, the estimated effect on clinical care based on
an insulin guideline, and a glucose measurement error grid (Parkes grid). We assessed
correlation among the metrics and created a set of factor models.
Results The metrics generally correlated with each other, but those that estimated
the effect on clinical care correlated with others the least and were generally associated
with their own independent factors. The other metrics appeared to separate into those
that emphasized errors in low glucose versus errors in high glucose. The Parkes grid was
well correlated with the transformed glucose but not the estimation of clinical care.
Discussion Our results indicate that we need to be careful before we assume that
commonly used metrics like RMS error in raw glucose or even metrics like the Parkes
grid that are designed to measure importance of differences will correlate well with
actual effect on clinical care processes. A combination of metrics appeared to explain
the most variance between cases. As prediction algorithms move into practice, it will
be important to measure actual effects.
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aiding glucose therapy decisions. Pending actual develop-
ment of a decision aid and deployment into clinical practice
with a clinical trial, we seek metrics that are likely to reflect
utility. Generic summary measures like root mean square
(RMS) error are often used for continuous measures like
glucose but do not necessarily capture clinical utility. For
example, the clinical significance of the difference between
blood glucose of 40mg/dL and 60mg/dL is much larger than
between 240mg/dL and 260mg/dL; capturing this requires
knowledge of physiology. Furthermore, commonly used
summary measures often assume simple statistical distri-
butions that may not be appropriate for medicine.6

In this study, we enumerate several possible metrics for
assessing goodness of the glucose predictions, pulling from
several sources like clinical practice guidelines. In the ab-
sence of the gold standard (i.e., a clinical trial of actual
utility), we run our prediction system on data from patients
in our initial clinical area, the neurological intensive care
unit, andwe review the correlations among them.We report
our approach in the hope that it can be extended to other
biomedical areas.

Methods

Predictive Algorithm
We tested several evaluation metrics in the context of a
predictive algorithm5 that uses one data assimilation meth-
od, an ensemble Kalman filter,7 pairedwith four mechanistic
glucose-insulin models. This paper is not focused on evalua-
tion of the specific data assimilation methods or physiologic
models or their pairings but rather on an evaluation meth-
odology for data assimilation-based forecasting methodolo-
gy within the context of clinical biomedicine, and in
particular, within the context of potential application of
physiological forecasting within the context of clinical deci-
sion support. We therefore primarily describe the evaluation
metrics in detail and provide a summary of the data assimi-
lation methods and physiologic models with links to further
detail.

Data assimilation1,2 is a technique that optimizes the
parameters of a mechanistic model by applying the model
to a current physical state to make a prediction and then
adjusts those parameters based on the difference between
the prediction and the actual subsequent state. In this study,
the model parameters can include insulin sensitivity, pan-
creatic β cell mass, and liver glucose production, the patient
physical state can include the current glucose and insulin
levels, and the model is a set of ordinary differential equa-
tions that predict the rate of change of the state based on the
current state and the model parameters. If predicted glucose
differs from the subsequent glucose that is actually observed,
data assimilation adjusts the model parameters to tend
toward better prediction. The corrections are applied itera-
tively and over time, and the parameters should move to
optimal levels for that patient. We used four glucose models
that varied in complexity from a simple exponential decay to
two ultradian models of glucose-insulin physiology to a
model that also included meal mechanics. In the first model,

for any measured glucose away from the mean for that
patient, the model has glucose decay exponentially toward
the mean value. The ultradian models3 represent glucose
production and utilization and insulin secretion and elimi-
nation using up to six state variables and 30 parameters such
that 100 to 150minute glucose oscillations are properly
modeled. The two ultradian versions differ in that the
“long” one uses all the states and parameters and the “short”
one uses just a subset. The meal model4 explicitly includes
nutrition in an expanded model with 12 state variables and
70 parameters.

Because the models are non-linear, we used an ensemble
Kalman filter7 to determine the corrections to parameters
needed at each iteration. It differs froma simple Kalmanfilter
in that instead of calculating the parameter changes, it
estimates them using a distribution of data points to which
it applies the non-linear model, seeing how it affects the
distribution.

We ran each of the four models on nine patients. Some
models did not converge for some patients, so nine patients
with four models each resulted in 29 successful runs.

Data
We used glucose measurements from Columbia University
Irving Medical Center derived from laboratory values and
fingerstick glucose meters in the neurological intensive care
unit. Approval was obtained from the Columbia University
institutional review board.

Our selection process was as follows. We started with a
base population of 852 patients from the neurological
intensive care unit. Our initial screening criteria were
patients with more than a 4-day intensive care unit length
of stay with at least 20 glucose measurements per day, and
we excluded patients with type 1 diabetes mellitus because
the glucose models we used assume there is insulin
production.

From this list, we selected patients at random. We
reviewed the list to ensure we included patients both with
and without exogenous insulin administration. Because we
were focused on glycemic control in average patients under
the stress of the neurological intensive care unit, we did not
require or exclude type 2 diabetes mellitus, but left it to the
randomselection; in practice, no patients selected had type 2
diabetes mellitus.

We limited the study to nine patients because of the
amount of work required to abstract all glucose measure-
ment, insulin administration, feeding, and glucose infusion
information for patients with prolonged lengths of stay.
Further, running the multiple algorithms on each patient
required manual adjustment of parameters.

The cohort is shown in ►Table 1. Individually identifiable
information has been removed and numeric values have
noise added to them. Comorbidities were recorded but
were withheld from the table to further protect patient
privacy. Older patients had hypertension, congestive heart
failure, or coronary artery disease, and one patient had mild
renal insufficiency, but the comorbidities were otherwise
uninformative.
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To better justify our selection of metrics below, we illus-
trate the challenge with several figures. ►Fig. 1 shows the
distribution of blood glucose in laboratory tests and in
fingerstick glucose meters at our medical center. Meters
are higher on average because they tend to be used for
patients with glucose intolerance or frank diabetes. Both
distributions are clearly non-normal.

►Fig. 2A shows the finger stick glucose of a typical type 2
diabetes patient (we reparametrize to sequence time, simply
numbering measurements instead of plotting actual time, based
on our previous finding8 that stationarity is improved and to
simplify comparisons). Superimposed on the figure is a set of
glucose predictions for that patient generated by our data-
assimilation-based glucose forecaster,5,9 which we use for illus-
trationinthispaper. In►Fig. 2A, thepredictionsandactualvalues
are well aligned. ►Fig. 2B shows a different patient and that
patient’s predictions; they are clearly misaligned early on, with
predictionsnearzeroatonepoint.Thequestionweaddress in this
paper is how to judge the relative value for predictions like these.

Metrics
We took four general approaches for metrics (summarized
in ►Table 2). Our first approach is a simple aggregation of the
difference in glucose between the forecast and the measured
values. A second approach is to transform glucose to a more
clinically relevant scale such that differences anywhere in the
scale are approximately linearwith impact. A third approach is to
assess how the forecast value and the measured value differ in
what clinical care would have been given, and therefore what
impact the difference might have had. A fourth use is a clinical
impact grid intended for glucose meters.

Fig. 1 Distribution of glucose. Distribution of glucose levels in the
Columbia University Irving Medical Center Database, showing labo-
ratory values (blue) and portable glucose meter measurements (red).

Table 1 Participantsa

Participant Age group Primary diagnosis ICU length
of stay (binned days)

Glucose coefficient
of variation

1 30–34 Subarachnoid hemorrhage 16–20 0.22

2 60–64 Intraventricular hemorrhage 11–15 0.13

3 60–64 Subarachnoid hemorrhage 16–20 0.23

4 20–24 Epidural hematoma from trauma 5–10 0.19

5 60–65 Intracerebral hemorrhage 11–15 0.22

6 20–24 Autoimmune encephalitis >20 0.25

7 40–45 Subarachnoid hemorrhage 16–20 0.21

8 30–34 Subarachnoid hemorrhage 5–10 0.22

9 40–44 Subarachnoid hemorrhage 16–20 0.33

aWe added noise to numeric values to assist in protecting patient privacy.

Fig. 2 Glucose time series and predictions for two patients. Time series of glucose levels for two patients, comparing the true levels (blue) to the
forecast levels (red).
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Root Mean Square Difference
For simple aggregation of the difference in glucose, we
estimated the RMS of the simple difference in measured
blood glucose level versus forecast level at each time point.
This one is the most easily explained and understood and

most commonly used.10 It will tend to emphasize differences
at high glucoses, missing the critical importance of hypogly-
cemia. The metric is generally used for verification11—show-
ing that the model produces accurate forecasts—rather than
utility, but we include it as it is a common metric and we
wish to see its relation to metrics intended to better assess
impact. (We also distinguish verification from validation, the
latter testing if the model is acting as we expect, be it
accurate or not.)

Transformed Glucose
We generated a glucose level transformation using the scale
in►Table 3 of approximate consequences of having a glucose
at that level (set by the authors but also informed by case
series12,13), and assigned a very approximate cost impact
changing by a factor of 10 at each level (dollar cost of
insurance payout from death, intensive care unit stay, emer-
gency department visit, office visit, change in dose at home).
We found empirically that this scale resulted in too high a
focus on extreme events, sowe switched to a logarithm scale
of cost. We then developed a transformation that would map
from measured glucose approximately to the logarithm of
cost at each level. We also considered logarithm of raw
glucose, but rejected it because it overemphasized low
glucose with little input about high glucose. The following
formula for transformation,

maps the glucose range of 0 to infinity to a range of�0.5 to
0.5, approximating the log cost but signed so that lowglucose
is negative. Given this transformation, we can calculate
several aggregations (i.e., several loss functions): RMS differ-
ence in g (instead of raw glucose) over estimates; the maxi-
mum “cost” (not monetary but in terms of total impact),
defined as the difference in g between the forecast and
measured value times the distance from the center of the
scale, 120; difference in highest g forecast to highest g

Table 2 Metrics

Short name Metric

Raw data

RMS Root mean square difference in glu-
cose pairs

Based on g

RMS (g)% 100� root mean square difference in g
(glucose) pairs

Max cost% 100 � max{ (difference in g pairs) �
(rms distance in g from 0) }

Peak max% 100 � (difference in peak g) � (peak g)

Peak min% 100 � (difference in smallest g) �
(smallest g)

Avg�10,000 10,000 � (difference in average g) �
(larger distance of average g from 0)

Treatment-based

Insulin Maximum difference in insulin pairs

Bolus Maximum difference in glucose bolus
pairs

Hold Difference in whether or not to hold
insulin at any time point

Notify Difference in whether or not to notify
doctor at any time point

Parkes-based

Avg Parkes% 100 � average Parkes class

RMS Parkes% 100 � root mean square Parkes (A¼ 0,
B¼1, C¼ 2 D¼ 3, E¼4)

Max Parkes Maximum Parkes class

Table 3 Blood glucose transformation

Glucose (mg/dL) Clinical impact Approximate cost impact 0.1 � log(cost) g

0 Death 100,000 0.5 �0.50

20 Coma 10,000 0.4 �0.36

40 Obvious symptoms 1,000 0.3 �0.25

65 Symptoms start 100 0.2 �0.15

80 Normal lower 10 0.1 �0.1

120 Center 1 0 0

180 Target upper for DM 10 0.1 0.1

250 Symptoms start 100 0.2 0.18

350 Symptoms obvious 1,000 0.3 0.24

600 Coma 10,000 0.4 0.33

1 Death 100,000 0.5 0.50
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measured to accommodate differences in timing; analogous
difference in lowest g; and difference in mean g times the
larger mean g (“mean cost”).

Insulin Administration Guideline
For changes in clinical care, we used an intensive care unit
insulin administration guideline to judge difference between
forecast and measurement. The guideline (►Fig. 3) specifies
actions like insulin dose and timing and glucose boluses
based on measured glucose and current insulin administra-
tion. We start the ►Fig. 3 algorithm with zero insulin and
follow the treatment recommendations for the time series
once using the forecast values and a second time using
measured values. For example, based on the first glucose
measurement, say 220, we set the initial insulin dose, in this
case 2 units per hour. If the next measurement is 190, then
we would decrease the rate to 1 unit per hour (because it
matches the row for glucose 181 to 251 that is decreased by
21 to 49, which recommends to decrease the rate by 1 unit
per hour). We do this both for the measured values and for
the forecasted values. We then look at the difference in
insulin dose (primary outcome) for the forecast versus
measured value, as well as any change in emergency bolus

of glucose, change in a hold order on insulin administration,
and change in need to notify the physician. We select the
largest difference in the time series.

Parkes Error Grid
We also use the Parkes error grid (►Fig. 4),14,15 which was a
teaching tool that was adapted for assessing the clinical
accuracy of blood glucose meters. For every forecast versus
measured pair, the grid assigns one of six categories of
impact, denoted A to F and rated none too dangerous; we
assign a number from1 to 6. For this score,we aggregated the
average Parkes error zone, the RMS Parkes error zone, and the
maximum Parkes error zone, which indicates the highest
potential clinical impact.

Evaluation
For our evaluation, we selected nine representative cases
similar to those in ►Fig. 2A and B, each with a time series of
glucose measurements, and wemade predictions using each
of four variations of our data assimilationmethod depending
on what physiological model we used. For each set of
predictions, we calculated the results of 13 metrics defined
above and shown in ►Table 2. Some metrics are scaled by

Fig. 3 Insulin administration guideline. This guideline dictates insulin rate and other interventions based on new blood glucose measurements
and the history of previous insulin doses. We used this guideline to estimate the effect that a difference in glucose level (actual vs. forecast)
might have had on clinical care. (The figure is supplied only for illustration of the glucose algorithm. Any incorporation into practice must be done
via appropriate local clinical confirmation and review. Image courtesy: NewYork-Presbyterian Hospital.)
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100 (“%”) or 10,000 to make them more readable. We do not
have a gold standard measurement of utility, so we instead
studied correlations among our metrics. We used pairwise
linear correlation using the Pearson product–moment corre-
lation coefficient between each pair of metrics.

We also performed a factor analysis using the “fa” func-
tion in the R statistical programming language (package
“psych”). We used ordinary (unweighted) least squares to
find the minimum residual (minres) solution, specifying one
to five factors.

Results

►Table 4 shows the results, with some rows missing where
the method did not converge. The patients in ►Fig. 2 are
bolded and marked with footnotes. All metrics are worse
(higher implies more error) for ►Fig. 2B compared

with ►Fig. 2A, other than the two metrics that were 0 in
both. Of the two patients with less error, patients 2 and 4, we
note that patient 4 was young and had a trauma-induced
subdural hematoma and shorter length of stay, and patient 2
had an intraventricular hemorrhage but otherwise did not
stand out as healthy. Those with subarachnoid hemorrhages
tended to have higher errors.

The correlation among the metrics is shown in ►Fig. 5. In
general, the RMS error of the raw or transformed glucose, g,
and Parkes errors correlated fairly well with each other, but
the treatment-based metrics were less well correlated with
those. The factor analysis in ►Table 5 revealed more detail.
The one-factor model reiterates the correlation result, that
RMS error of the raw or g and Parkes errors carry the most
variance. The two-factor model appears to split between
metrics that emphasize low versus high glucose errors, with
RMS of g, the peak difference in low glucose, average cost,

Fig. 4 Parkes error grid. This grid assigns an error severity level from A to E (E high) based on the actual glucose level and the glucose level that is
measured. We used forecasts in place of measurements. Image courtesy: Pfützner et al.15
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and average andRMS Parkes error grouped for low values and
peak of the difference in high glucose, RMS error of raw
glucose, andmaximumParkes error in thehigh group. A third
factor adds the treatment metrics, insulin change, and hold
insulin, as its own factor. Additional factors separate insulin
change from insulin hold and pull in notification of the
clinician.

Discussion

Our results can be seen from two points of view. The first
point of view is related to utility. Using the treatment
guideline (►Fig. 3) as a surrogate for impact on clinical
care, we find that all of its metrics (insulin, bolus, hold,
notify) have only mediocre correlation with either the
common metric, RMS error in raw glucose, or even RMS
error of glucose that has been transformed to better track
impact. Looking at the factors in ►Table 5, the guideline-
based measurements generally have significant loadings in
their own factors separate from the RMS metrics. That is,
they appear to deliver different information. Therefore, at
least in this domain, commonly used metrics may not in fact
correlate well with effects on clinical care.

The Parkes error grid metrics have better correlation with
the RMS glucose error metrics, which is not surprising
because it is an algorithm based on differences in glucose
measurement, rescaled roughly by using five categories, A to
E. In the factor analysis, when the model is given enough
factors, the average Parkes and RMS Parkes metrics remain
tightly linked to the RMS error of the transformed glucose
and not to the guideline-basedmetrics. Therefore, the Parkes
error grid, which is intended to show the importance of
differences in glucose, may not be a good indicator of effects
on clinical care.

The second point of view is related to explaining the
variance between cases: how can we best separate cases
without specifically worrying about effects on clinical care.
Most of the metrics appeared to reflect gross features in the
time series, such as comparing the metrics for the cases
shown in ►Fig. 2A and B. Many of the metrics were well
correlated. They grouped in a reasonable way, with the

largest separation being in whether the errors appeared to
be more on the low-glucose side or high-glucose side. The
changes in treatment explained less variance than the more
basic changes in glucose level, and theyappeared to be poorly
correlated with those basic changes, implying—as noted
above—that they may supply useful orthogonal information.
It appears that the simplest approach, RMS of difference in
raw glucose, did correlate with the others, but that the
transformed glucose, g, explained more variance. The com-
bination of RMS of g, peak of the difference in high glucose,
and insulin change may adequately cover the variance.

Our main limitation is that putting an algorithm like this
into actual clinical practice and measuring differences in
outcomes is an enormous undertaking and was out of scope
for this study. Nevertheless, we believe that the actual
guideline used in practice where the data were generated
should cast a reasonable light on projected impact on the
process of care. Second, our study was limited to nine
patients from the neurological intensive care unit, and
although that was sufficient to estimate the factor model
and correlations, it limits the representativeness of our
sample. We believe that our main messages—that is it
important to explicitly evaluate evaluation metrics, that
several glucose-related metrics can be enumerated, and
that correlation and factor analysis can be used to assess
the metrics in the absence of a gold standard—still hold and
acknowledge that it would be useful to expand the clinical
area beyond the neurological intensive care unit. Third, we
assessed only one clinical area—glucose management—but it
is a common and important one, and demonstration of a
mismatch between common metrics and likely clinical care
impact here at least raises the question for other areas.
Fourth, we chose a particular insulin protocol for this study,
shown in ►Fig. 3, but protocols vary16 and could lead to
different results. Fifth, we focused on the glucose point
estimate, but the predicted bounds around the estimate
may be more important (e.g., the likelihood of severe hypo-
glycemia); the bounds would be worthy of further study.

In conclusion, our results indicate that we need to be
careful before we assume that commonly used metrics like
RMS error in rawglucose or evenmetrics like the Parkes error

Fig. 5 Correlation among the metrics. Pearson correlation coefficient among the metrics in ►Table 2, colored on a scale from strong
correlation (near 1) as green and poor or inverse correlation (0 and below) as red.
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grid that are designed to measure importance of differences
will correlate well with actual effect on clinical care process-
es. A combination of metrics appeared to explain the most
variance between cases. As prediction algorithms move into
practice, it will be important to measure actual effects.
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