Plasmid-Mediated Fluoroquinolone Resistance in Pseudomonas aeruginosa and Acinetobacter baumannii

P. V. Geetha1 K. V. L. Aishwarya1 M. Shanthi1 Uma Sekar1

1 Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India

Address for correspondence Geetha P. V., MSc, Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116, Tamil Nadu, India (e-mail: gethu16@gmail.com).

Abstract

Introduction Pseudomonas aeruginosa and Acinetobacter baumannii are important pathogens in health care–associated infections. Fluoroquinolone resistance has emerged in these pathogens. In this study, we aimed to determine the occurrence of plasmid-mediated quinolone resistance (PMQR) determinants (qnrA, qnrB, qnrS, aac(6′)-Ib-cr, oqxAB, and qepA) by polymerase chain reaction (PCR) and the transmissibility of plasmid-borne resistance determinants in clinical isolates of P. aeruginosa and A. baumannii.

Materials and Methods The study included P. aeruginosa (85) and A. baumannii (45) which were nonduplicate, clinically significant, and ciprofloxacin resistant. Antibiotic susceptibility testing was done by disk diffusion method for other antimicrobial agents, namely amikacin, ceftazidime, piperacillin/tazobactam, ofloxacin, levofloxacin, and imipenem. Minimum inhibitory concentration of ciprofloxacin was determined. Efflux pump activity was evaluated using carbonyl-cyanide m-chlorophenylhydrazone (CCCP). The presence of PMQR genes was screened by PCR amplification. Transferability of PMQR genes was determined by conjugation experiment, and plasmid-based replicon typing was performed.

Results Resistance to other classes of antimicrobial agents was as follows: ceftazidime (86.9%), piperacillin/tazobactam (73.8%), imipenem (69.2%), and amikacin (63.8%). The minimal inhibitory concentration (MIC)50 and MIC90 for ciprofloxacin were 64 and greater than or equal to 256 µg/mL, respectively. There was a reduction in MIC for 37 (28.4%) isolates with CCCP. In P. aeruginosa, 12 (14.1%) isolates harbored qnrB, 12 (14.1%) qnrS, 9 (10.5%) both qnrB and qnrS, 66 (77.6%) aac(6′)-Ib-cr, and 3 (3.5%) oqxAB gene. In A. baumannii, qnrB was detected in 2 (4.4%), 1 (2.2%) harbored both the qnrA and qnrS, 1 isolate harbored qnrB and qnrS, 21 (46.6%) aac(6′)-Ib-cr, and 1 (2.2%) isolate harbored oqxAB gene. Notably, qepA gene was not detected in any of the study isolates. Conjugation experiments revealed that 12 (9.2%) were transferable. Of the transconjugants, seven (58.3%) belonged to IncFII type plasmid replicon, followed by four (33.3%) IncA/C and one (8.3%) IncFIC type.

Conclusion The plasmid-mediated resistance aac(6′)-Ib-cr gene is primarily responsible for mediating fluoroquinolone resistance in clinical isolates of P. aeruginosa and A. baumannii. The predominant plasmid type is IncFII.
Introduction

Fluoroquinolones are synthetic antimicrobial agents with a broad spectrum of activity. They are effective against a wide range of gram-negative and gram-positive pathogenic bacteria. Over the past few years, fueled by their wide use, resistance to fluoroquinolones has raised globally. An important resistance mechanism to fluoroquinolones is described by mutations in the quinolone resistance-determining regions of gyrA and topoisomerase encoding genes. Another well-known fluoroquinolone resistance mechanism is the decreased intracellular drug accumulation by upregulation of efflux pumps or decreased expression of outer membrane porin. The emergence of plasmid-mediated quinolone resistance (PMQR) has been reported since 1998. These are horizontally transferable and are referred to as “PMQR.” The three PMQR genes include: (1) the qnr, (2) aac(6’)-Ib-cr (aminoglycoside acetyltransferase), and (3) oqxAB and qepA (efflux pumps).

The plasmid qnr genes (qnrA, qnrB, and qnrS) encode for proteins of the pentapeptide repeat family that protect DNA gyrase and topoisomerase iv from fluoroquinolone inhibition. The aac(6’)-Ib-cr is a bifunctional variant of aminoglycoside acetyltransferase capable of modifying the fluoroquinolones that have an amino nitrogen on the C7 of piperazinyl ring, such as ciprofloxacin and norfloxacin, thereby reducing their activity. Other fluoroquinolones lacking an unsubstituted piperazinyl nitrogen are not affected. The plasmid-mediated qepA efflux pump belongs to the major facilitator superfamily that decreases susceptibility to hydrophilic fluoroquinolones, especially ciprofloxacin. The oqxAB encodes for efflux pumps belonging to the resistance nodulation division family and is a multidrug efflux pump.

Acinetobacter baumannii and Pseudomonas aeruginosa are well recognized representatives of nonfermenting gram-negative pathogens which are responsible for health care-acquired infections. In both species, resistance to fluoroquinolones has been a recognized problem due to their ready ability to acquire resistance determinants. Most studies on prevalence of PMQR genes are focused on Enterobacteriaceae. Data on the prevalence of PMQR genes among clinical isolates of P. aeruginosa and A. baumannii are scarce.

The presence of fluoroquinolone resistance genes on plasmid enables their spread to other bacterial species by horizontal gene transfer. The identification of related plasmids associated with specific resistance genes helps track the spread of resistant plasmids. Hence, polymerase chain reaction (PCR)-based replicon typing (PBRT) has been adopted worldwide as the method for plasmid identification and typing.

In this study, we aimed to determine the occurrence of PMQR determinants (qnrA, qnrB, qnrS, aac(6’)-Ib-cr, oqxAB, and qepA) by PCR and the transmissibility of these plasmid-borne resistance determinants in clinical isolates of P. aeruginosa and A. baumannii.

Materials and Methods

Bacterial Isolates

The study included P. aeruginosa (85) and A. baumannii (45) which were nonduplicate, clinically significant and ciprofloxacin resistant (as determined by disc diffusion test) and obtained from clinical specimens of hospitalized patients at university teaching hospital in South India. They were collected over a period of 1 year from July 2014 to June 2015. They were obtained from clinical specimens such as urine (5), exudative samples (66), respiratory secretions (47), and blood stream (12). The isolates were identified up to species level by automated system (VITEK2 GN-card; BioMerieux, Brussels, Belgium) and/or standard biochemical tests.

Antimicrobial Susceptibility Testing

Antibiotic susceptibility testing was done by Kirby–Bauer disc diffusion method for the following antimicrobials: cefazidime (30 µg), piperacillin/tazobactam (30 µg), imipenem (10 µg), amikacin (30 µg), levofloxacin (5 µg), and ofloxacin (5 µg) (Himedia Laboratories, India). The minimal inhibitory concentration (MIC) of ciprofloxacin was determined by agar dilution technique according to CLSI 2017 guidelines. ATCC Escherichia coli 25922 was used as control for both disc diffusion method and MIC determination.

Phenotypic Detection of Efflux Pump Activity

To detect the presence of efflux pump mechanism, carbonylcyanide m-chlorophenylhydrazone (CCCP), the efflux pump inhibitor was added to each Muller–Hinton (MH) agar plate containing 0.125 to 256 µg/mL of ciprofloxacin. The fixed concentration of CCCP in the MH agar was 20 µg/mL. The MIC with CCCP incorporated was determined in twofold serial dilutions as for the antibiotic (CLSI 2017). A plate without antibiotic and containing only CCCP inhibitor was used as control. The criteria for the presence of efflux pump activity was based on a fourfold decrease in MIC of ciprofloxacin in addition of CCCP.

Polymerase Chain Reaction

The DNA of the study isolates was extracted by the boiling method. The amplification of qnr genes (qnrA, qnrB, and qnrS) was performed by multiplex PCR using the cyclic profile: initial denaturation at 94°C for 7 minutes; denaturation at 94°C for 50 seconds, annealing at 53°C for 40 seconds, and elongation at 72°C for 60 seconds, repeated for 35 cycles, and a final extension at 72°C for 5 minutes. The PCR conditions for aac(6’)-Ib-cr were: initial denaturation at 94°C for 7 minutes, denaturation at 94°C for 50 seconds, annealing at 55°C for 40 seconds, and elongation at 72°C for 60 seconds, repeated for 35 cycles, and a final extension at 72°C for 5 minutes. The PCR cyclic parameters for oqxAB were as follows: initial denaturation at 95°C for 15 minutes; 30 cycles of 94°C for 30 seconds, 63°C for 90 seconds, and 72°C for 90 seconds, followed by a final extension at 72°C for 10 minutes. The PCR conditions used for qepA were as follows: initial denaturation at 96°C for 1 minute, followed by 30 cycles of amplification at 96°C for 1 minute, annealing
at 60°C for 1 minute, extension at 72°C for 1 minute, and the final extension step was at 72°C for 5 minutes. The primers used is given in Table 1. The PCR by-product was examined by electrophoresis in agarose gel containing ethidium bromide and visualized by gel documentation system.

DNA Sequencing
The PCR positive amplicons were sequenced at SciGenome Labs Pvt, Ltd., India and analyzed with BLAST tools (www.ncbi.nlm.nih.gov). The assigned GenBank accession number for the submitted sequences are: (1) MH709266 (qnrA); (2) KY130487 (qnrB); (3) KY130488 (qnrS); (4) MH709269 (acc(6’)-Ib-cr), and (5) MN273774 (oqxAB).

Conjugation
Conjugation experiments were performed for all PMQR positive isolates. Escherichia coli J53 AzR strain was used as the recipient and PMQR positive isolates as donor. The donor and recipient cells (0.5 mL each) in logarithmic phase were added to 3 mL of LB broth and incubated at 37°C overnight. Transconjugants were selected by plating on MacConkey agar plates containing sodium azide (100 µg/mL) and ciprofloxacin (0.5 µg/mL). The transfer of PMQR genes in transconjugants was confirmed by PCR.

Incompatibility Grouping of Plasmid Encoding Resistance for PMQR Genes
Plasmid Inc group for the transconjugants was determined by PBRT. Five sets of multiplex PCR ([HI1, HI2, I1]; [X, I/M, N]; [FIA, FIB, W]; [YP FIC]; [A/C, T, FIIS]) and three simplex PCR (FrepB, K/B, B/O) were performed. The primers employed is depicted in Table 2.

Results

Antimicrobial Susceptibility Testing
All the study isolates were resistant to other fluoroquinolones—levofoxacin and ofloxacin. Resistance to other classes of antimicrobial agents was as follows: ceftazidime (86.9%), piperacillin/tazobactam (73.8%), imipenem (69.2%), and amikacin (63.8%). The MIC of ciprofloxacin ranged from 4 to greater than or equal to 256 µg/mL. The MIC50 and MIC90 values were 64 and greater than or equal to 256 µg/mL, respectively.

Detection of Efflux Pump Activity
Among 130 isolates, twofold reduction was evident in 46 (35.8%) and fourfold or more reduction was observed in 37 (28.4%). Fourfold was evident in 11 (12.9%), 8-fold in 5 (5.8%), 16-fold in 7 (8.2%), 32-fold in 3 (3.5%), and 128 fold in 2 (2.3%) among P. aeruginosa. In A. baumannii, 4-fold reduction was observed in one (2.2%) isolate, 8-fold in three (6.6%), 16-fold in two (4.4%), and 64-fold in three (6.6%), respectively.

Polymerase Chain Reaction
Among P. aeruginosa, qnr genes were detected in 36 (27.6%) isolates, of which 12 (14.1%) isolated harbored qnrB, 12 (14.1%) carried qnrS gene, and 9 (10.5%) isolates harbored both qnrB and qnrS genes. Among A. baumannii, qnrB was detected in two (4.4%) isolates and only one (2.2%) harbored both the qnrA and qnrS; 77.6% (66) of P. aeruginosa and 46.6% (21) of A. baumannii isolates harbored aac(6’)-Ib-cr gene; 3.5% (3) of P. aeruginosa and 2.2% (1) of A. baumannii isolates harbored oqxAB gene. qepA gene was not detected in any of the study isolates. The PMQR genes encountered is depicted in Table 4.

PMQR Gene Transfer and Distribution of Plasmid Replicons
In P. aeruginosa, 9.2% (12/130) were transferred successfully. All the 12 transconjugants were positive only for aac(6’)-Ib-cr gene. In A. baumannii, none of them was transferable. The plasmid incompatibility types of the transconjugants were recognized by PBRT. Of the 12 transconjugants, 7 (58.3%) belonged to IncFII type plasmid replicon, 4 (33.3%) were IncA/C, and 1 (8.3%) IncFIC type.

Table 1 Primes used in this study

<table>
<thead>
<tr>
<th>PMQR gene</th>
<th>Primers</th>
<th>Product size</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>qnrA</td>
<td>5′-TCAGCAAGAGAGATCTCA-3′</td>
<td>516</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>5′-GGCCAGCACTTAACCTCCA-3′</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qnrB</td>
<td>5′-GATGCTGAAAGCAGAAGG-3′</td>
<td>469</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>5′-AGGATGCTTGGTAGTTGCTG-3′</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qnrS</td>
<td>5′-ACGCCATCCTCAACTGCAAA-3′</td>
<td>417</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>5′-TTAAATGGCCACCTGTAGGCA-3′</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acc(6’)-Ib-cr</td>
<td>5′-TTGGAACCGGGGACGGAM-3′</td>
<td>260</td>
<td>17</td>
</tr>
<tr>
<td>oqxAB</td>
<td>5′-CCGCAAGCTATAATTAGTCG-3′</td>
<td>313</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5′-GCGAGGTITTTTGATGTGGA-3′</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qepA</td>
<td>5′-GCA GGT CCA GCA GGG GGT AG-3 ′</td>
<td>218</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>5′-CTT CCT GCC CGA GTA TCG TG-3′</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: PMQR, plasmid-mediated quinolone resistance.
Table 2 | Primers for PCR-based replicon typing

<table>
<thead>
<tr>
<th>Replicon type</th>
<th>Primer sequence (5′–3′)</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI1</td>
<td>F-GGAGCCGATGGATTACTCTTCCATACGCAGA</td>
<td>471</td>
</tr>
<tr>
<td>HI2</td>
<td>F-TTGTTCCTGGATACCTCGGTTACAGA</td>
<td>644</td>
</tr>
<tr>
<td>I1</td>
<td>F-CCAGGACGGCGGAGCCGAGA</td>
<td>139</td>
</tr>
<tr>
<td>X</td>
<td>F-AACCTTCAGAAGCTTTGCTGCTATACGCAGA</td>
<td>376</td>
</tr>
<tr>
<td>L/M</td>
<td>F-GGATGAAACTACTACAGCATTGGAAGA</td>
<td>785</td>
</tr>
<tr>
<td>N</td>
<td>F-GTTCGCCTGCTGCTGGTTAACGAG</td>
<td>559</td>
</tr>
<tr>
<td>FIA</td>
<td>F-CCATGCTCTCTCTGCTGCTGGTTAACGAG</td>
<td>462</td>
</tr>
<tr>
<td>FIB</td>
<td>F-GGAGGTTCGGACACAGCTTCGATTAACGAGA</td>
<td>308</td>
</tr>
<tr>
<td>W</td>
<td>F-CCTAGAACCAAAACCAAGCCCCGCA</td>
<td>242</td>
</tr>
<tr>
<td>Y</td>
<td>F-AATTCACAAACACTGTCGCACTTCGACATATACGAGA</td>
<td>765</td>
</tr>
<tr>
<td>P</td>
<td>F-CGTATGCGCTGCTGCTGCTGGTTAACGAG</td>
<td>534</td>
</tr>
<tr>
<td>FIC</td>
<td>F-GTGAAACTGCGGTAGAGGAGGAAGGAACTTCGTTTTCGACATATAGAT</td>
<td>262</td>
</tr>
<tr>
<td>A/C</td>
<td>F-GAGAACAAACAAAGACGGACCTGGA</td>
<td>465</td>
</tr>
<tr>
<td>T</td>
<td>F-CTGTCGCTGCTGCTGCTGGTTAACGAGA</td>
<td>750</td>
</tr>
<tr>
<td>FIIα</td>
<td>F-CGTTTGCGCTGCTGCTGCTGGTTAACGAGA</td>
<td>270</td>
</tr>
<tr>
<td>FrepII</td>
<td>F-CATGTCGCTGCTGCTGCTGGTTAACGAGA</td>
<td>270</td>
</tr>
<tr>
<td>K/B</td>
<td>F-GCGGTCGCTGCTGCTGCTGCTGGTTAACGAGA</td>
<td>160</td>
</tr>
<tr>
<td>B/O</td>
<td>F-GCGGTCGCTGCTGCTGCTGCTGGTTAACGAGA</td>
<td>159</td>
</tr>
</tbody>
</table>

Abbreviation: PCR, polymerase chain reaction.

Discussion

Fluoroquinolones are potent antibiotics active against a broad range of bacteria. The global increase in the prevalence of clinical strains with reduced susceptibility to fluoroquinolones constitutes a major concern. The emergence of fluoroquinolone resistance among *P. aeruginosa* and *A. baumannii* presents a serious challenge in clinical management of bacterial infections. In this study, antibiotic susceptibility testing revealed that all the test isolates were resistance to the other fluoroquinolones also: levofloxacin and ofloxacin. Resistance to other class of antibiotics was cefazidime (86.9%), piperacillin/tazobactam (73.8%), imipenem (69.2%), and amikacin (63.8%). In this study, 32.9% (28) of *P. aeruginosa* and 37.7% (17) of *A. baumannii* isolates had an MIC of greater than or equal to 256 μg/mL to ciprofloxacin and similar observation has also been documented by Zaki et al.

In this study, the MIC decrease factor value of fourfold and more reduction was evident in 28.4% (37/130) of isolates. In one isolate (4.5%) (*P. aeruginosa*), it resulted in loss of ciprofloxacin resistance thus reflecting a highly active efflux activity as evidenced by the decrease in MIC from 256 to 0.5 μg/mL on addition of CCCP inhibitor. Similar inhibition of efflux pump activity has been described previously. Researchers in the United States, Iran, and Bahrain have observed nonsignificant twofold reduction in MIC on addition of efflux pump inhibitor CCCP in *P. aeruginosa*. Helmy et al in their study reported significant efflux pump activity in *A. baumannii* and *P. aeruginosa* (64.1% and 41.1%),. Gomaa et al in Egypt recorded a high percentage of efflux pump-mediated resistance (77.8%) in *A. baumannii*. In contrast, in South Africa, CCCP inhibitors did not affect MIC in *A. baumannii*.

In this study, among qnr genes, 14.1% (12) were qnrB and 14.1% (12) were qnrS in *P. aeruginosa* which is a higher rate compared with a previous study from Egypt, which documented the presence of qnrB and qnrS genes in 1.8 and 2.7% of *Pseudomonas* spp. In contrast, El-Badawy et al and Rafiq et al documented high prevalence of qnrS (79.5 and 24%) gene, respectively. qnrA and qnrB were not detected in any of their isolates of *Pseudomonas* spp. Similar to the earlier study, qnrA gene was not detected in any of the *P. aeruginosa* in the present study. In China, a single isolate of *P. aeruginosa* with qnrA has been observed. In many other studies, qnr determinants were not detectable in clinical isolates of *P. aeruginosa*.

Yang et al examined the prevalence of qnr genes among 39 isolates of *A. baumannii* where 7.7% (3/39) isolates harbored qnrB and 2.6% (1/39) qnrS. Hamed et al also reported the presence of qnrS gene in one isolate of *A. baumannii*. Touati et al observed qnrA gene in only one isolate in their study. In the present study, qnrB was encountered in two isolates singly. One isolate harbored qnrB and qnrS, while another carried both qnrA and qnrS.

Table 3 | Effect of CCCP on the ciprofloxacin MIC

<table>
<thead>
<tr>
<th>Organism (n = 130)</th>
<th>Fold reduction in MIC + CCCP (μg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (n = 85)</td>
<td>21</td>
</tr>
<tr>
<td>Acinetobacter baumannii (n = 45)</td>
<td>26</td>
</tr>
</tbody>
</table>

Abbreviations: CCCP, carbonyl-cyanide m-chlorophenylhydrazone; MIC, minimal inhibitory concentration.
In Brazil, a low prevalence of aac(6′)-Ib-cr gene (2.6%) was found in *P. aeruginosa*. Studies from Turkey and Egypt reported a high prevalence of 56.4 and 79.5% in *P. aeruginosa*, respectively. This is similar to the findings of the present study (66.9%). In this study, only four (3%) isolates harbored oqxAB. Notably, qepA gene was not encountered. oqxAB and qepA genes were not identified in many other studies too.

Conjugation experiments demonstrated that in 14.1% (12/85) of *P. aeruginosa*, PMQR determinants were successfully transferred and all the transconjugants harbored the aac(6′)-Ib-cr gene. In *A. baumannii*, none of them was transferable. Jiang et al in their study documented that in 33.3% of nonfermenting gram negative bacteria (NFGNB), the transconjugants harbored the same PMQR determinants as their donors. In this study, more than one half of PMQR determinants, 59.2% were non-conjugative, and this suggests that these genes may be of chromosomal location. Among the PMQR genes, high incidence of aac(6′)-Ib-cr (66.9%) was encountered and when conjugated, the transferability rate was 100% for this gene. This emphasizes that aac(6′)-Ib-cr gene plays a major role in mediating fluoroquinolone resistance. In the present study, of the 12 transconjugants, 33.3% belonged to IncA/C type plasmid replicon. In Nigeria, IncFII plasmid harboring aac(6′)-Ib-cr gene has been described in *P. aeruginosa*. A recent study in Argentina has demonstrated plasmid IncR group in *P. aeruginosa*.

In this study, the prevalence rate of PMQR determinants is (68.5%), which is higher than the rates in China (1.7%), Egypt (4.5%), and Nigeria (61%). However, increasing rates of fluoroquinolone resistance have limited the treatment option. The approach of combined antibiotic therapies is an alternative to this phenomenon.

The ciprofloxacin resistance isolates which were negative for PMQR genes in our study may probably harbor the chromosomal mutation genes (*gyrA, gyrB, parC*, and *parE*). These genes were not looked for in the present study.

Conclusion

Plasmid-mediated fluoroquinolone resistance is encountered in (78.8%) of *P. aeruginosa*, while in *A. baumannii*, it is present in a proportion of 48.8% of clinical isolates. Single clinical isolate can harbor multiple PMQR genes. Plasmid-mediated efflux fluoroquinolone resistance is responsible only for a small proportion of resistance to fluoroquinolone in clinical isolates of *P. aeruginosa* and *A. baumannii*. Of the plasmid efflux pump genes, only oqxAB is present in 3% of isolates. It is reasonable to assume that of the plasmid-mediated resistance, aac(6′)-Ib-cr is primarily responsible for mediating a major proportion of resistance to fluoroquinolones. IncFII is the predominant plasmid type followed by IncAC and IncFIC type.

Funding

This study is funded by Department of Science & Technology (DST) under Women Scientists Scheme (WOS-A).

Conflict of Interest

None declared.

References

8. Rodríguez-Martínez JM, Díaz de Alba P, Briales A, et al. Contribution of OqxAB efflux pumps to quinolone resistance in extended-
Plasmid-Mediated Fluoroquinolone Resistance

Geetha et al.

spectrum-β-lactamase-producing Klebsiella pneumoniae. J Anti-
microb Chemother 2013;68(01):68–73
9 Rodríguez-Martínez JM, Cano ME, Velasco C, Martínez-Martínez
Infect Chemother 2011;17(02):149–182
10 Yang H, Chen H, Yang Q, Chen M, Wang H. High prevalence of
plasmid-mediated quinolone resistance genes qnr and aac(6’)-ib-
cr in clinical isolates of Enterobacteriaceae from nine teaching
4268–4273
quinolone resistance determinants and the emergence of multi-
drug resistance in clinical isolates of Shigella in Sichuan area, China.
Diagn Microbiol Infect Dis 2013;75(03):327–329
quinolone resistance determinants in clinical isolates of Acinetob-
13 Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ.
Identification of plasmids by PCR-based replicon typing. J Micro-
biol Methods 2005;63(03):219–228
14 Clinical and Laboratory Standards Institute. Performance Stand-
ards for Antimicrobial Susceptibility Testing. M100. 27th ed.
Wayne (PA): Clinical and Laboratory Standards Institute; 2017
15 Ardebili A, Talebi M, Azimi L, Rastegar Lari A. Effect of efflux pump
inhibitor carbonyl cyanide 3-chlorophenylhydrazone on the mini-
mum inhibitory concentration of ciprofloxacin in Acinetobacter
e6911
16 Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. qnr
prevalence in cefazidime-resistant Enterobacteriaceae isolates from
the United States. Antimicrob Agents Chemother 2006;50
(08):2872–2874
17 Wareham DW, Umoren I, Khanna P, Gordon NC. Allele-specific
polymerase chain reaction (PCR) for rapid detection of the aac
2010;36(05):476–477
18 Saleh MA, Balboula MM. Plasmid mediated quinolone resistance
determinants among nosocomial clinical Pseudomonas aerugi-
Plasmid-mediated quinolone resistance in clinical isolates of
Escherichia coli from Shanghai, China. Antimicrob Agents Chem-
other 2003;47(07):2242–2248
20 Pham TDM, Ziora ZM, Blaskovich MAT. Quinolone antibiotics.
MedChemComm 2019;10(10):1719–1739
21 Navon-Venezia S, Ben-Ami R, Carmeli Y. Update on Pseudomonas
aeruginosa and Acinetobacter baumannii infections in the health-
22 Zaki MES, Abou ELKheir N, Mofreh M. Molecular study of quino-
lone resistance determining regions of gyrA gene and parC genes
in clinical isolates of Acinetobacter baumannii resistant to fluoro-
23 Chenia HY, Pillay B, Pillay D. Analysis of the mechanisms of
fluoroquinolone resistance in urinary tract pathogens. J Antimi-
crob Chemother 2006;58(06):1274–1278
24 Osei Sekyere J, Amoako DG. Genomic and phenotypic characteri-
sation of fluoroquinolone resistance mechanisms in Enterobact-
e0178888
25 Nkaido H, Pagès JM. Broad-spectrum efflux pumps and their role
in multidrug resistance of Gram-negative bacteria. FEMS Micro-
biol Rev 2012;36(02):340–363
26 Talebi-Taher M, Majdpour A, Gholami A, Rasouli-Kouhi S, Adabi
M. Role of efflux pump inhibitor in decreasing antibiotic cross-
resistance of Pseudomonas aeruginosa in a burn hospital in Iran.
J Infect Dev Ctries 2016;10(06):600–604
27 Al Rashed N, Joji RM, Saeed NK, Bindayna KM. Detection of overex-
pression of efflux pump expression in fluoroquinolone-
resistant Pseudomonas aeruginosa isolates. Int J Appl Basic Med
Res 2020;10(01):37–42
28 Helmy OM, Kasef MT. Different phenotypic and molecular
mechanisms associated with multidrug resistance in Gram-nega-
tive clinical isolates from Egypt. Infect Drug Resist 2017;
10:479–498
29 Gomaa FM, Tawalkar WM, El-Azm FI. Phenotypic and genotypic
detection of some antimicrobial resistance mechanisms among
multidrug-resistant Acinetobacter baumannii isolated from immu-
99–111
30 El-Badawy MF, Alrobaian MM, Shohayeb MM, Abdelwahab SF.
Investigation of six plasmid-mediated quinolone resistance genes
among clinical isolates of pseudomonas: a genotypic study in
31 Rafiq K, Ahmad K, Ahmad N, Gohar M, Shehzad MA, Saeed MQ.
Determination of Qnr allele frequencies in fluoroquinolone resist-
tant Pseudomonas aeruginosa isolated from burn wounds. J Pak
Med Assoc 2019;69(02):250–252
32 Yang X, Xing B, Liang C, Ye Z, Zhang Y. Prevalence and fluoroqui-
nozoline resistance of Pseudomonas aeruginosa in a hospital in South
33 Nazik H, Ongen B, Kuvat N. Investigation of plasmid-mediated
quinolone resistance among isolates obtained in a Turkish inten-
34 Coban AY, Tanrıverdi Çaçiçi Y, Yıldırım T, Erturun Z, Durupınar B,
Bozdoğan B. Investigation of plasmid-mediated quinolone resist-
ance in Pseudomonas aeruginosa strains isolated from cystic fi-
brosis patients [in Turkish]. Mikrobiyol Bul 2011;45(04):
602–608
35 Hamed SM, Elkhatabi WF, El-Mahallawy HA, Helmy MM, Ashour
MS, Aboshahba KMA. Multiple mechanisms contributing to cip-
rofloxacin resistance among Gram negative bacteria causing
infections to cancer patients. Sci Rep 2018;8(01):12268
36 Touati A, Brasme L, Benallaloua S, Charout A, Madoux J, De Champs
C. First report of qnrB-producing Enterobacter cloacae and qnrA-
producing Acinetobacter baumannii recovered from Algerian hos-
37 Araujo BF, Ferreira ML, Campos PA, et al. Clinical and molecular
epidemiology of multidrug-resistant P. aeruginosa carrying aac
(6’)-ib-cr, qnrS1 and blaSPM genes in Brazil. PloS One 2016;11
(05):e0155914
38 Çaçiçi YT, Coban AY, Gunaydin M. Investigation of plasmid-medi-
ated quinolone resistance in Pseudomonas aeruginosa clinical
(6’)-ib and 16S rRNA methylase genes among Pseudomonas aerugi-
osa isolates from Iran. Arch Pediatr Infect Dis 2013;1(03):
109–112
40 Xue-qing Z, Dan-ping L, Chun-quan X, et al. Detection of plasmid-
mediated quinolone resistance determinants in clinical non-
fermentative bacteria and ciprofloxacin sensitive Enterobacteri-
aciaceae strains. Dis Surveill 2014;29(02):130–135
41 Michalska AD, Sacha PT, Odjana D, Wieczorek A, Tryniszewska E.
Prevalence of resistance to aminoglycosides and fluoroquinolo-
nes among Pseudomonas aeruginosa strains in a University
Hospital in Northeastern Poland. Braz J Microbiol 2015;46(04):
1455–1458
42 Jiang X, Yu T, Jiang X, Zhang W, Zhang L, Ma J. Emergence of
plasmid-mediated quinolone resistance genes in clinical isolates
of Acinetobacter baumannii and Pseudomonas aeruginosa in
43 Ogbolu DO, Daini OA, Oguleduun A, Terry Alli OA, Webber MA.
Dissemination of Inc plasmids carrying beta-lactamase genes in
Gram-negative bacteria from Nigerian hospitals. J Infect Dev
Ctries 2013;7(05):382–390
44 Elena A, Quinteros M, Di Conza J, Gutkind G, Cejas D, Radice MA.
Full characterization of an IncR plasmid harboring qnrS1
