Bioglass: A New Era in Modern Dentistry

Shruti Singh1  Amit Patil1  Sheetal Mali1  Himmat Jaiswal1

1 Department of Conservative and Endodontics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Navi Mumbai, Maharashtra, India

Eur J Gen Dent 2022;11:1–6.

Introduction

Like wheels of time, dentistry too keeps evolving and innovating; one of such innovation is Bioglass, developed by Hench in 1969. It comprises of calcium sodium phosphosilicate. Bioglass precipitates hydroxyapatite crystal in aqueous solution, which has ability to bond with soft and hard tissues of the body without rejection. The bioactivity of Bioglass is due its reactions with tissue fluids, which initiates hydroxyapatite crystal formation. The properties of bioactivity along with biocompatibility paved way for Bioglass into modern dentistry for various purposes such as for repair of voids and defects of facial bone, remodeling of dentoalveolar complex, etc.1

History

Bioglass was developed by Professor Larry Hench, of University of Florida, in 1969. The idea of developing a material that could bond to bone struck him in a conversation with a US army colonel who had just returned from war. The colonel suggested for a material to be flourished that would be compatible with human body, since implants then available were made of metals or polymers that were bioinert and caused fibrous encapsulation in preference to a stable bond with tissue.3

The main discovery was of a glass with the composition 46.1 mol% silicon dioxide, 24.4 mol% sodium oxide (Na2O), 26.9 mol% calcium oxide (CaO), and 2.6 mol% phosphorus pentoxide (P2O5), later termed Bioglass 45S5, which forms...
firm bond with bone that could only be detached on breaking the bone.\textsuperscript{2}

The University of Florida used “Bioglass” as trade name for the original 45S5 composition. Thus, the term Bioglass is used to refer to the 45S5 composition and is not a general term for bioactive glass.\textsuperscript{3}

### Composition

Besides above content, it may also contain some of biocompatible and bioactive minerals like:

1. Fluorapatite
2. Wollastonite
3. Diopside
4. Tricalcium phosphate (\textsuperscript{\ref{Table 1}})

Network modifiers, namely CaO, Na\textsubscript{2}O, and P\textsubscript{2}O\textsubscript{5}, are generally used.\textsuperscript{5} However, both CaO and Na\textsubscript{2}O may be replaced with magnesium oxide and potassium oxide, which promote apatite crystal formation. To alter the surface reactions and melting properties, aluminum oxide and barium oxide may be added.\textsuperscript{6} Ions may be added for modifying bioactivity and antimicrobial properties, viz. silicon ions, phosphorus ions, strontium ions, silver ions, zinc ions, and fluoride ions.\textsuperscript{7} More acid-resistant fluorapatite formation is initiated, rather than hydroxyapatite. Augmented remineralization of dentin and reduced possibility of dentin-matrix degradation is initiated by fluoride coupled with Bioglass. These attributes make fluoride vitally important in dental applications of Bioglass.\textsuperscript{8}

There are two variants of Bioglass available, type A and type B. The type A is alkali-free Bioglass, especially sodium, with a composition of 70% diopside, 10% fluorapatite, and 20% tricalcium phosphate, while the type B variant is bioinert with silica content greater than 60% by weight.\textsuperscript{9}

### Method of Preparation

Conventionally, glasses were prepared using melt quenching above 1,300°C. Nevertheless, this method had a few drawbacks such as:

- Bioactivity of the substance is reduced owing to high sintering temperature.
- Ineffective to fabricate porous scaffolds.\textsuperscript{10}

Also, heat treatment of silicon-containing Bioglass results in release of stress from glass, thereby affecting the mechanical properties.\textsuperscript{11}

### Properties of Bioglass

Bioglass is biocompatible, nontoxic, and chemically stable in biological environment. It has antimicrobial property as well, since it elevates the pH and osmolarity locally, thereby creating unfavorable environment for bacterial growth.\textsuperscript{14,15}

Bioglass differs highly from conventional glass in its dissolution. Bioglass requires a particular dissolution for
its activation, which is accomplished by addition of network modifiers like CaO or Na₂O, which makes both the surface and silica reactive.¹⁴

Alkali-free Bioglass coupled with zinc oxide and strontium oxide imparts antimicrobial property against Staphylococcus aureus and Escherichia coli. These features make Bioglass a classic bone alternative in remedy for osteomyelitis, peri-implant infection, sinus augmentation, and repairing orbital floor flaws.¹⁵,¹⁶

As Bioglass can be incorporated into hydrophilic and hydrophobic conditions, it may be used along with dental implants as coating.¹⁷ Also, particle size influences the antimicrobial properties; smaller-sized particles provide larger surface area, thus increasing the antimicrobial effects.¹⁸

Advantages and Disadvantages of Bioglass

The chief advantage of Bioglass, which makes it a noteworthy innovation, is the high surface speed reaction that facilitates forming of rapid networks to the tissues. Its bioactive nature, broad-spectrum antimicrobial properties, and biocompatibility are few other advantages. However, every material has some disadvantages; the main disadvantage of Bioglass is its low mechanical strength.¹⁹

Clinical Application

As a result of its broad-spectrum antimicrobial property and bioactive property, Bioglass has been a topic of keen interest for researchers. Bioglass has made its various clinical implementations in fields of dentistry, spinal implants, tissue engineering, and various other medical aspects.²⁰ In the discipline of dentistry, it was initially used in practice as bone replacements in periodontal regeneration, dentoalveolar and maxillofacial reconstruction, and implants.²¹ Other contributions of Bioglass in dentistry include its use as restorative material, in intracanal medicament used for pulp capping, as dental adhesives, for enamel regeneration, and to treat dental hypersensitivity and air abrasion (► Fig. 2).

Bioglass as Intracanal Medicament

The main interfering determinants in the periapical repair process are bacteria and its derivatives as they play a crucial role in periapical diseases development and its
advancement.\textsuperscript{33,34} Disinfection of the complicated root canal structure is vital as \textit{C. albicans} and \textit{Enterococcus faecalis} are the enduring root canal microorganisms that lead to root canal treatment failure. This disinfection also imparts longevity to the treatment.\textsuperscript{35} Suitable intracanal medicament in between treatment sessions provide effective antimicrobial effect. A broad-spectrum antimicrobial property is the ideal requirement for an intracanal medicament, since it is more suitable with periapical tissue and induces hard tissue repair, also reducing inflammation at the same time.\textsuperscript{36,37}

As discussed earlier, Bioglass has antimicrobial and anti-inflammatory effects along with osteoconductive properties that aid in repair of bone faults.\textsuperscript{38} The broad-spectrum antimicrobial effects account for the use of Bioglass as an intracanal medicament.\textsuperscript{39,40}

Recent researches show that Bioglass has higher antimicrobial effect in contrast to calcium hydroxide, which is due to the fact that calcium hydroxide is affected by buffering actions of dentin, whereas Bioglass is less responsive to the same.\textsuperscript{41}

Clinical outcome: A recent research was conducted to study the effectiveness of chlorhexidine gluconate-1% gel and bioactive glass S53P4 as intracanal medicaments. Method used in the study was polymerase chain reaction. The result showed that both medicaments caused a considerable reduction in amount of bacterial growth. Bioglass S53P4 caused much more reduction than chlorhexidine gluconate-1% gel. Hence, to conclude, we can say that Bioglass S53P4 has better antibacterial property as compared with chlorhexidine gluconate-1% gel.\textsuperscript{42}

### To Treat Dentin Hypersensitivity

An intense and momentary dental ache due to a physical, chemical, osmotic, evaporative, or thermal cause is termed as dentin hypersensitivity. Most accepted dentin hypersensitivity theory is the hydrodynamic theory.\textsuperscript{43} Commercially available Sensodyne (GlaxoSmithKline) toothpaste has Novamin to deliver relief by blocking the dentinal tubules and precipitating hydroxyapatite crystal. The use of Bioglass instead of silica in toothpaste provides resilience against pH rinse and helps cleaning off the blocked tubules. Recent experimental studies show that Bioglass biosilicate dispersion in distilled water provides remedy for a follow-up period of 6 months against dentin hypersensitivity.\textsuperscript{44} The major advantage of using Bioglass in dentifrices is that it induces hydroxyapatite formation, which in turn has following advantages:

- It induces remineralization.
- It is used for treatment of dentine hypersensitivity.
- Hydroxyapatite can bind to microorganisms by interacting with the bacterial adhesin thus agglutinating the microorganism.\textsuperscript{45}

Fluoride Bioglass may be recommended for treatment of dentin hypersensitivity. It can be used daily by individuals with a compromised periodontal status and individuals with a compromised enamel surface.\textsuperscript{46}

### Dental Adhesives

Dental adhesives make adherence, or bonding, of a compound or material, like composites used in dentistry or orthodontic brackets, to natural tooth tissue achievable. The adhesive functions to link two substances.\textsuperscript{26}

With use of orthodontic brackets, cases of white spot lesion are common. A favorable condition for microbial flora growth is initiated, since the orthodontic bracket adheres to the tooth surface. Prevention of white spot lesion incurs additional costs as regular tooth brushing and use of fluoride dentifrices, mouthwash, or varnishes become vital. A high degree of patient cooperation is necessity to achieve adequate results. A key interest of the researchers in this filed is to improvise fluoride-releasing sealants, primers, and adhesives to achieve continuous fluoride release throughout orthodontic treatment, so as to prevent occurring of white spot lesions caused due to use of orthodontic brackets. However, addition of fluoride decreases the mechanical properties of the resin-based adhesives, though fluoride release is reduced or is exhausted over time.\textsuperscript{26} Bioglass has a bonding system that reduces micropermeability by inducing remineralization of mineral-deficient areas while showing increase in modulus of elasticity at same time. This property makes Bioglass suitable as dental adhesives. A bioactive glass ceramic is Biosilicate, which when applied before application enhances the bond strength system in both mineralized and unmineralized dentins.\textsuperscript{47}

### In Periodontics

Periodontitis is chronic inflammation of the periodontium, which is marked by formation of pockets in gingiva, resorption of alveolar bone, loss of attachment, and thus leading to loss of tooth structure if not treated.\textsuperscript{48} Bioglass in form of PerioGlass (NovaBone Products LLC, Alachua, Florida, United States) is widely used to repair periodontal defects as it is an excellent grafting material. It also found its uses in periodontal surgical practices to activate bone regeneration, to be specific, in interproximal bone faults; this effectiveness is a result of its hemostatic effect on trabecular bone.\textsuperscript{49}

### In Implant Dentistry

Dental implants are artificial screw-shaped tools that are inserted into alveolar socket or periosteum, to hold replacement or bridge. Dental implant finds its uses in prosthodontic constructions to improve its action and aesthetics.\textsuperscript{50} Uninterrupted contact between the implant surface and bone tissue is vital to accomplish adequate retention in bone, or osseointegration.\textsuperscript{51} Titanium-based alloys are extensively employed materials for dental implants; these are biocompatible and osteoconductive materials, but are bioinert. This bioinert nature is overcome by addition of Bioglass. Titanium-based alloy implant, along with Bioglass, provides active bonding and antimicrobial properties, thus reducing overall treatment time.\textsuperscript{52}
Clinical outcome: A study was undertaken to examine the clinical outcomes of hydroxyapatite-, Bioglass-, and Ti6Al4V-coated dental implants (Table 2).

Abnormal motility in perpendicular direction was observed with pus formation; along with this, resorption of almost the entire area of hydroxyapatite coating was observed in hydroxyapatite-coated failure implants. However, Bioglass-coated implants were devoid of any such complications, as horizontal mobility and partial resorption of coating were observed with failed Bioglass-coated implant.53

### Table 2 Clinical outcome of study conducted on hydroxyapatite-, Bioglass-, and Ti6Al4V-coated implants

<table>
<thead>
<tr>
<th></th>
<th>Hydroxyapatite coated</th>
<th>Bioglass coated</th>
<th>Ti6Al4V coated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>41</td>
<td>45</td>
<td>40</td>
</tr>
<tr>
<td>Failed prosthetic attachment</td>
<td>23</td>
<td>21</td>
<td>20</td>
</tr>
</tbody>
</table>

#### Enamel Remineralization

Primary carious lesions that have not cavitated, for example white spot lesion, may be prevented from further spreading and remineralization. Through routine plaque removal and fluoride deposition, operative procedures may be avoided. Fluoride has extensive applications in toothpaste, varnishes, and mouth rinse due to its anticariogenic property, and also because it enhances remineralization.54

Fluoride doped with Bioglass exhibits potential usage in dental utilization, for example, as dentifrices and restorative materials.55 A Bioglass coupled with fluoride and increased phosphate content is commercially available as BiominF, which results in the formation of fluorapatite, in contrast to calcium fluoride. The significantly higher phosphate content provides a source for vital ions of fluorapatite.56

#### Conclusion

Hence, in conclusion we can say that Bioglass is a recent innovation that is not only beneficial in various aspects of dentistry but also in orthopaedics and spinal implants. The properties that make Bioglass a diverse material to be used in dentistry are:

- It is bioactive.
- It is biocompatible.
- It has a broad-spectrum antimicrobial property.

Despite Bioglass having a higher bone regeneration capacity than bioceramics, it lags behind other bioceramics in terms of commercial success, which may be due to its low strength. Bioglass may have not yet reached its utmost usage, but research activity is growing.

#### References

Bioglass: A New Era in Modern Dentistry

Singh et al.

Oguntebi BR. Dentine tubule infection and endodontic therapy

Love RM. Enterococcus faecalis

Siqueira JF Jr. Aetiology of root canal treatment failure: why well-

Tadjoedin ES, de Lange GL, Lyaruu DM, Kuiper L, Burger EH. High

Yli-Urpo H, Närhi T, Söderling E. Antimicrobial effects of glass

Prabhakar AR, Paul M J, Basappa N. Comparative evaluation of the

Peltola MJ, Aitasalo KM, Suonpää JT, Yli-Urpo A, Laippala PJ,

Hench L, Hench JW, Greenspan D. Bioglass: a short history and

Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive glass

Profeta AC, Prucher GM. Bioactive-glass in periodontal surgery

Sarin S, Rekhi A. Bioactive glass: a potential next generation

Salonen JI, Arjasmaa M, Tuominen U, Behbehani MJ, Zaatar E.

Sairin S, Rekhi A. Bioactive glass: a potential next generation

Lanza R, Langer R, Vacanti J. Principles of tissue engineering. 3rd

Lovelace TB, Mellong JT, Meffert RM, Jones AA, Nummikoski PV,


(9):1027–1035

Peltola MJ, Aitasalo KM, Suonpää JT, Yli-Urpo A, Laippala PJ,

Lovelace TB, Mellong JT, Meffert RM, Jones AA, Nummikoski PV,


(9):1027–1035


Tadjoedin ES, de Lange GL, Lyaruu DM, Kuiper L, Burger EH. High concentrations of bioactive glass material (BioGran) vs. autoge-


13(04):428–436

Hench L, Hench JW, Greenspan D. Bioglass: a short history and


Fujikura K, Karpukhina N, Kasuga T, Brauer D, Hill R, Law R.


Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive glass


Pereira-Cenci T, Cenci MS, Fedorowicz Z, Marchesan MA. Anti-


10.1002/14651858.CD007819.pub3


Tezvergil-Muthuay A, Seseogullari-Dirihan R, Feitosa VP, Cama G,


999–1005

Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzik J. Me-


Yli-Urpo H, Närhi T, Söderling E. Antimicrobial effects of glass


Siqueira JF Jr, Rögäis IN, Souto R, De Uzeda M, Colombo AP.


Siqueira JF Jr. Aetiology of root canal treatment failure: why well-

treated teeth can fail. Int Endod J 2001;34(01):1–10

Kritihikadatta J, Indira R, Dorthothyakalyani AL. Disinfection of dentinal tubules with 2% chlorhexidine, 2% metronidazole, bioac-


Love RM. Enterococcus faecalis—a mechanism for its role in


Chong BS, Pitt Ford TR. The role of intracanal medication in root


Safi KE, Spangler LS, Langeland K. Root canal dentinal tubule


Thomas MV, Puleo DA, Al-Sabbagh M. Bioactive glass three

Zehnder M, Söderling E, Salonen J, Waltimo T. Preliminary evalu-


Bioactive glass S53P4 versus chlorhexidine gluconate as intra-


Idon PI, Esan TA, Bamise CT. Oral health-related quality of life in

patients presenting with dentine hypersensitivity: a randomized controlled study of treatment effect. Eur J Gen Dent 2017;

6:99–105

Tirapelli C, Panzeri H, Lara EH, Soares RG, Petil O, Zanotto ED. The

2011;38(04):253–262

Chen L, Al-Bayatee S, Khurshid Z, Shavandi A, Brunton P, Rat-


Anthony D, Zahid S, Khalid H, et al. Effectiveness of thymoqui-

one and fluoridated bioactive glass/nano-oxide contained den-


de Morais RC, Silveira RE, Chinelatti M, Geraldelli S, de Carvalho

Panzeri Pires-de-Souza F. Bond strength of adhesive systems to sound and demineralized dentin treated with bioactive glass


Hirschfeld I, Wasserman B. A long-term survey of tooth loss in

600 treated periodontal patients. J Periodontol 1978;49(05):

225–237

Profeta AC, Prucher GM. Bioactive-glass in periodontal surgery


Müller F, Wahl G, Fuhr K. Age-related satisfaction with complete
dentures, desire for improvement and attitudes to implant treat-

ment. Gerodontology 1994;11(01):7–12

Albrektsson T, Bränemark PI, Hansson HA, Lindström J, Osseo-

integrated titanium implants. Requirements for ensuring a long-

lasting, direct bone-to-implant anchorage in man. Acta Orthop

Scand 1981;52(02):155–170

Talreja PS, Gayathri GV, Mehta DS. Treatment of an early failing

implant by guided bone regeneration using resorbable collagen


(01):131–136


Mendes AC, Restrepo M, Bussaneli D, Zuanon AC. Use of casein


27–31

Brauer DS, Karpukhina N, O’Donnell MD, Law RV, Hill RG. Flu-

oride-containing bioactive glasses: effect of glass design and structure on degradation, pH and apatite formation in simulated


Faroog I, Majeed A, Alshwaimi E, Almas K. Efficacy of a novel

fluoride containing bioactive glass based dentifrice in remineral-
izing artificially induced demineralization in human enamel. Fluoride 2018;52:447–455