Peak velocity and its time limit are as good as the velocity associated with VO$_{2max}$ for training prescription in runners

ABSTRACT

This study compared the effects of 4 weeks of training prescribed by peak velocity (V_{peak}) or velocity associated with maximum oxygen uptake ($vV_{\text{O}_{2\text{max}}}$) in moderately trained endurance runners. Study participants were 14 runners (18–35 years) randomized into 2 groups, named group VO$_2$ (GVO$_2$) and group V$_{\text{peak}}$ (GVP). The GVO$_2$ had training prescribed by VO$_{2\text{max}}$ and its time limit (t_{lim}), whereas the GVP had training prescribed by V$_{\text{peak}}$ and its t_{lim}. Four tests were performed on a treadmill: 2 maximum incremental for V$_{\text{peak}}$ and vVO$_{2\text{max}}$ and 2 for their t_{lim}. Performance (10 km) was evaluated on a 400 m track. Evaluations were repeated after 4 weeks of endurance training. The results showed a significant effect of training on V$_{\text{peak}}$ [GVP (16.7 ± 1.2–17.6 ± 1.5 km·h$^{-1}$), GVO$_2$ (17.1 ± 1.9–17.7 ± 1.6 km·h$^{-1}$); V$_{\text{O}_{2\text{max}}}$ [GVP (16.4 ± 1.4–17.0 ± 1.3 km·h$^{-1}$), GVO$_2$ (17.2 ± 1.7–17.5 ± 1.9 km·h$^{-1}$)]; and 10 km performance [GVP (41.3 ± 2.4–39.9 ± 2.7 min), GVO$_2$ (40.1 ± 3.4–39.2 ± 2.9 min)]. The V$_{\text{peak}}$ highly correlated with performance in both pre- and post-training in GVP (r = 0.97–0.86) and GVO$_2$ (r = 0.95–0.94), as well as with VO$_{2\text{max}}$ in GVP (r = 0.82–0.88) and GVO$_2$ (r = 0.99–0.98). It is concluded that training prescribed by V$_{\text{peak}}$ promoted similar improvements compared to training prescribed by VO$_{2\text{max}}$. The use of V$_{\text{peak}}$ is recommended due to its practical application and the low cost of determination.

Introduction

Success in endurance racing depends on an elaborate training prescription utilizing appropriate loads and recovery periods. Such prescriptions should be planned according to the needs of the individual athlete for achieving the highest level of adaptation possible prior to the competition [16, 22, 29]. For proper training prescription, it is necessary to use variables that control and monitor the intensity of effort and possible physiological adaptations resulting from this practice and, most importantly, that show a correlation with performance [7].

Currently, the velocity associated with the occurrence of maximum oxygen uptake ($vV_{\text{O}_{2\text{max}}}$) is considered a good variable to predict performance and to monitor and prescribe endurance running training [2, 9, 27]. In addition, the application of its time limit (t_{lim}) may improve the prescription of the most adequate set duration for high-intensity interval workouts [2]. Previous studies show that training prescribed by V$_{\text{O}_{2\text{max}}}$ and its respective t_{lim} promoted improvements in performance of 3, 5 and 10 km [9, 13, 34]. In addition, the training prescribed by these variables can promote improvements in VO$_{2\text{max}}$, running speed at the lactate threshold, and parameters related to heart rate (HR) among others [9, 13, 34]. However, the V$_{\text{O}_{2\text{max}}}$ determination requires the use and handling of expensive and delicate equipment, as well as the interpretation of data, limiting its use to only a few research laboratories, coaches, and athletes. Moreover, the VO$_{2\text{max}}$ refers to estimating the minimum speed required to achieve VO$_{2\text{max}}$, as a result of calculating vVO$_{2\text{max}}$ based on VO$_{2\text{max}}$ determination, whereas the peak velocity (V_{peak}) is the maximum speed directly measured and associated with VO$_{2\text{max}}$ [26].

Thus, V_{peak} is an attractive variable that has been gaining attention among researchers, trainers, and endurance runners due to its practicality and financial accessibility. Despite the fact that V_{peak} is associated with VO$_{2\text{max}}$ and is a great predictor of endurance performance in tests 3–90 km [25, 26, 30], it is necessary to test its applicability to endurance training prescription as well as the applicability of its t_{lim} to determine duration of high-intensity interval sets. Although the intra-individual differences between V_{peak} and VO$_{2\text{max}}$ trained.
might be very small, the t_{lim} differences may be large, which would meaningfully change the duration of high-intensity interval sets.

Given that, as far as it is known, V_{peak} based training prescription for moderate intensity continuous training and high-intensity interval training has not been tested yet, the aim of this study was to evaluate the effect of 4 weeks of training prescribed by V_{peak}, $v_{\text{VO}_2\text{max}}$, and their respective t_{lim} in moderately trained endurance runners. Our hypothesis was that both training models would improve aerobic, anaerobic, and performance parameters of moderately trained runners in a similar manner. We also hypothesized that V_{peak} would demonstrate a higher correlation with the 10 km performance than the $v_{\text{VO}_2\text{max}}$, before and after training, given that V_{peak} is the ‘measured’ speed associated with VO_2max, and $v_{\text{VO}_2\text{max}}$ is the ‘estimated’ speed associated with VO_2max [11, 26]. Should this be shown, it would demonstrate that the V_{peak} was a more sensitive variable to the effects of training for moderately trained runners.

Methods

Participants

Fourteen moderately trained endurance runners were recruited for participation in this study and showed average speed (AS) between 14 and 16 km · h$^{-1}$ (= 62–71 % of the world record). They performed at least 5 training sessions per week. Their average training distance during the study was 40.9 ± 4.5 km · week$^{-1}$, which was similar to their training distance before the study. Subjects had the following characteristics: (mean ± SD, age 29.2 ± 5.3 years, weight 71.9 ± 11.0 kg, height 175.1 ± 4.3 cm) with a minimum of 1 year of experience in competitive long distance races. Before the study, the subjects were informed about the testing and training and possible risks involved and provided written informed consent. This study was approved by the University’s Human Research Ethics Committee (#1.022.468). All research was conducted ethically according to international standards and as required by the International Journal of Sports Medicine [15].

Experimental design

Runners were randomized into 2 groups using random numbers. One group was trained by V_{peak} (GVP; n = 8) and the other group by $v_{\text{VO}_2\text{max}}$ (GVO2; n = 6). The experiment involved the implementation of 2 different endurance running training programs (GVP vs. GVO2) using the prescribed external workload (%V_{peak} or %$v_{\text{VO}_2\text{max}}$) for 5 sessions per week over a 4-week period, for a total of 20 sessions. Before and after the training intervention, in a counterbalanced order, the subjects were evaluated using 2 incremental tests on a treadmill to measure VO_2max and V_{peak} and 2 to determine their t_{lim}. Performance (10 km) was evaluated on an official running track (400 m). In addition, variables such as heart rate (HR), blood lactate concentration ([La]), and rating of perceived exertion (RPE) were also evaluated during the tests. The tests were performed over 2 weeks, with a period of at least 48 h separating each of them.

Determination of V_{peak} and its t_{lim}

The V_{peak} was assessed on a motorized treadmill (Super ATL; Inbrasport, Porto Alegre, Brazil) with the gradient set at 1 % [21]. After a 3 min warm-up walking at 8 km · h$^{-1}$, the protocol started with an initial velocity of 10 km · h$^{-1}$, followed by an increase of 1 km · h$^{-1}$ every 3 min until volitional exhaustion (i.e., participant was unable to continue running). If the last stage was not completed, the V_{peak} was calculated on the partial time remaining in the last stage using the equation proposed by Kuipers et al. [23]: $V = (t/180 \times 1.0)$, where V was the last completed velocity (km · h$^{-1}$) and t, the time (s) of the uncompleted step (180 s). The t_{lim} at V_{peak} was assessed after a 15 min warm-up at 60 % V_{peak}, when velocity was increased to V_{peak}. The subjects were verbally encouraged to run to volitional exhaustion [4].

Determination of VO_2max and its t_{lim}

The protocol used for determining the VO_2max was the same as that used for the determination of V_{peak}; additionally, expired gas was collected to determine the VO_2max using a portable gas analyzer (k4b²-Cosmed, Roma, Italy). The VO_2max was regarded as the maximum value obtained during the test, measured at an average of 15-s intervals, and when at least 2 of the following criteria were met: (1) $[\text{La}]_{\text{peak}} \geq 8 \text{ mmol} \cdot \text{L}^{-1}$, (2) $HR_{\text{max}} \geq 100$ % of endurance-trained age-predicted HR_{max} using the age-based $206 – 0.7 \times \text{age}$ equation [37] and (3) $HR_{\text{max}} \geq 110$ % of HR_{max} for the GVP group, and the t_{lim} at V_{peak}, when velocity was increased to V_{peak}. The subjects were verbally encouraged to run to volitional exhaustion [4].

Time trials of 10 km

Participants undertook 10 km time trials on a 400 m outdoor running track at 6:00 pm. The trial was preceded by a self-selected pace warm-up of 10 min duration. A hydration station was set up on the track with natural water. The participants were encouraged to achieve their best performance. Split times were registered at each 400 m and the average velocity of each section was calculated.

Determination [LA], HR, and RPE

Earlobe capillary blood samples (25 µl) were collected into a capillary tube at the end of the tests (time zero of recovery) and at the third, fifth, and seventh minutes of passive recovery with participants seated in a comfortable chair. From these samples, [La] was subsequently determined by electroenzymatic methods using an automated analyzer (YSI 2300 STAT, Yellow Springs, Ohio, USA). Peak [La] ([La]$_{\text{peak}}$) was defined for each participant as the highest post-exercise [La] value. RPE was also monitored during all tests by using a 6–20 Borg scale [6], and the highest RPE value was adopted as the peak RPE (RPE$_{\text{peak}}$). HR was monitored during all tests (Polar RS800sd; Kempele, Finland) and HR_{max} was defined as the highest HR value recorded during the test.

Training programs

All training sessions were held on a 400 m outdoor running track, between 5:00 and 9:00 pm hours due to the availability of participants and the fact that their performance would be better in the evening [10]. The training protocol consisted of 2 types of running training: continuous moderate-intensity and high-intensity interval training (short interval and long interval). The running intensity was prescribed based on the V_{peak} and t_{lim} for the GVP group, and the $v_{\text{VO}_2\text{max}}$ and t_{lim} for the GVO2 group (see Table 1).

The GVO2 and GVP training sessions were preceded by a 15 min warm-up consisting of 5 min of low intensity running at a self-select-
ed velocity, 5 min of stretching, and 5 min of running at 60 % of \(V_{\text{peak}} \) or \(V\dot{O}_{2\text{max}} \) \[35\]. After the warm-up, the main training session (continuous or interval training) was conducted, followed by a cool-down comprised of self-selected low-intensity running and stretching.

The training participants of both groups were trained 5 times per week for 4 weeks. They performed 10 sessions of continuous training and 10 of interval training. During the odd weeks, participants performed 3 sessions of continuous training and 2 sessions of interval training; and the reverse during even weeks. The training sessions of the groups were differentiated by the prescription method (\(V_{\text{peak}} \) and their respective \(t_{\text{lim}} \) to GVP and \(V\dot{O}_{2\text{max}} \) and their respective \(t_{\text{lim}} \) to GVO\textsubscript{2}). The intensity and volume of training were maintained throughout the protocol, except for continuous training in weeks 3 and 4 when the duration was increased from 45 to 60 min for both groups.

Statistical analyses

All statistical analyses were performed using the SPSS software (v.20, SPSS Inc., Chicago, IL, USA). The variables are presented as mean ± standard deviation (SD). Data normality was verified by the Shapiro-Wilk test. The comparison between the pre- and post-training for the 2 groups was made by mixed ANOVA for repeated measures. Correlations between aerobic and anaerobic parameters with \(10 \text{km} \) running performance were performed using the Pearson correlation coefficient. The differences (i.e., effect size [ES]) were considered small when ES ≤ 0.2, moderate when ES ≤ 0.5 and large when ES > 0.8. Furthermore, magnitude-based inferences were applied to estimate the chances of a true observed effect being positive, trivial or negative, considering the smallest worthwhile change per Hopkins et al. \[18\]. The probability of a positive/trivial/negative effect of the training programs was interpreted following the recommendations of Hopkins et al. \[18\]; effect: < 1 % almost certainly not; 1–5 % very unlikely; 5–25 % unlikely; 25–75 % possibly; 75–95 % likely; 95–99 % very likely; > 99 % almost certainly. When the chance of having positive or negative effects in an outcome were both above 10 %, the qualitative inference result was considered as unclear.

Results

The results show \(V_{\text{peak}} \) improvement in both groups after the 4 week training period: GVP = 2.8 [1.5–4.1] min (\(p = 0.01 \)) and GVO\textsubscript{2} = 2.2 [0.4–3.9] min (\(p = 0.06 \)) (\(\Rightarrow \) Table 2).

No significant differences were observed in either group between pre- and post-training for \(HR_{\text{max}} \), \(RPE_{\text{max}} \), \(t_{\text{lim}} \) at \(V_{\text{peak}} \), \(t_{\text{lim}} \) at \(V\dot{O}_{2\text{max}} \), and LA\textsubscript{peak}.

After 4 weeks of training, we observed a significant improvement in \(V\dot{O}_{2\text{max}} \) only in the GVP group: 0.6 [−2.2–1.8] km·h\(^{-1}\); (\(p = 0.01 \)). In relation to the total duration of the test, a significant increase was observed in both groups: GVP = 1.7 [0.4–3.0] min (\(p = 0.036 \)) and GVO\textsubscript{2} = 1.2 [0.2–2.2] min (\(p = 0.047 \)) (\(\Rightarrow \) Table 3).

Table 4 shows the values of the variables both pre- and post-training obtained in the \(10 \text{km} \) performance. In both groups, there was a significant reduction in the time it took to run a \(10 \text{km} \) distance after the training program (GVP (−1.4 [−2.5 to −0.3] min; \(p = 0.04 \)) and GVO\textsubscript{2} (−0.9 [−1.6–0.2] min; \(p = 0.048 \)). Furthermore, there was a significant increase in the AS after 4 weeks of training (0.6 [0.1–1.0] km·h\(^{-1}\) for GVP (\(p = 0.04 \)) and 0.4 [0.1–0.6] km·h\(^{-1}\) for GVO\textsubscript{2} (\(p = 0.036 \)). The runners’ AS was between 14 and 16 km·h\(^{-1}\) (62–71 % of the world record).

The effect size for the comparison between GVP and GVO\textsubscript{2} for the percentage variation after the 4 week running training period revealed a small effect for \(V_{\text{peak}} \) and \(10 \text{km} \) time and a moderate effect for \(V\dot{O}_{2\text{max}} \), all favorable to GVP (\(\Rightarrow \) Fig. 1).

The \(V_{\text{peak}} \) and \(V\dot{O}_{2\text{max}} \) were significantly correlated with the \(10 \text{km} \) performance in both pre- and post-training time in both groups (\(\Rightarrow \) Table 5). The \(V\dot{O}_{2\text{max}} \), however, did not correlate with the \(10 \text{km} \) performance at any time (\(\Rightarrow \) Table 5).

Discussion

The aim of the study was to evaluate the effect of 4 weeks of training prescribed by \(V_{\text{peak}} \), \(V\dot{O}_{2\text{max}} \), and their respective \(t_{\text{lim}} \) in moderately trained endurance runners.

The main finding of the study was that the training prescribed by \(V_{\text{peak}} \) or by \(V\dot{O}_{2\text{max}} \) promoted similar improvements for moderately trained endurance runners, which confirmed a previous hypothesis. Effect size analysis showed slightly favorable changes for GVP. A significant correlation was observed between the \(10 \text{km} \) performance and the \(V_{\text{peak}} \) and \(V\dot{O}_{2\text{max}} \), but our hypothesis was disproven because only in the pre-training time, the GVP showed a higher
Table 2 Mean ± standard deviation (SD) difference (90 % CI), magnitude of inference, and significance level for group x time interaction (P) for the variables: V_{peak} (km·h$^{-1}$) Total time of the incremental test (min), HR$_{\text{max}}$ (bpm) RPE$_{\text{max}}$ (AU), LA$_{\text{peak}}$ (mmol·L$^{-1}$) and t$_{\text{lim}}$ at V_{peak} (min) obtained from the experimental protocol for determining the V_{peak}.

<table>
<thead>
<tr>
<th>Variable</th>
<th>GVP (n=8)</th>
<th>GVO$_2$ (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>V_{peak} (km·h$^{-1}$)</td>
<td>16.7 ± 1.2</td>
<td>17.6 ± 1.5 *</td>
</tr>
<tr>
<td>Duration (min)</td>
<td>23.0 ± 3.7</td>
<td>25.8 ± 4.4 *</td>
</tr>
<tr>
<td>HR$_{\text{max}}$ (bpm)</td>
<td>198 ± 5.0</td>
<td>191 ± 6.0</td>
</tr>
<tr>
<td>RPE$_{\text{max}}$ (AU)</td>
<td>19.9 ± 0.4</td>
<td>19.9 ± 0.4</td>
</tr>
<tr>
<td>LA$_{\text{peak}}$ (mmol·L$^{-1}$)</td>
<td>9.3 ± 0.6</td>
<td>10.3 ± 0.8</td>
</tr>
<tr>
<td>t$_{\text{lim}}$ (min)</td>
<td>6.8 ± 1.6</td>
<td>6.7 ± 1.3</td>
</tr>
</tbody>
</table>

*P<0.05 in relation to pre moment to the same group. Dif = Difference; (P/T/N) = Positive/Trivial/Negative

Table 3 Mean ± standard deviation (SD) difference (90 % CI), magnitude of inference, and significance level for group x time interaction (P) for the variables: VO$_2_{\text{max}}$ (ml·kg$^{-1}$·min$^{-1}$), vVO$_2_{\text{max}}$ (km·h$^{-1}$), total duration of incremental test (min) HR$_{\text{max}}$ (bpm) RPE$_{\text{max}}$ (AU), LA$_{\text{peak}}$ (mmol·L$^{-1}$) and t$_{\text{lim}}$ at vVO$_2_{\text{max}}$ (min) obtained from the determination of the protocol vVO$_2_{\text{max}}$.

<table>
<thead>
<tr>
<th>Variable</th>
<th>GVP (n=8)</th>
<th>GVO$_2$ (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
</tr>
<tr>
<td>VO$2{\text{max}}$ (ml·kg$^{-1}$·min$^{-1}$)</td>
<td>50.2 ± 3.5</td>
<td>50.0 ± 2.3</td>
</tr>
<tr>
<td>vVO$2{\text{max}}$ (km·h$^{-1}$)</td>
<td>16.4 ± 1.4</td>
<td>17.0 ± 1.3 *</td>
</tr>
<tr>
<td>Duration (min)</td>
<td>21.6 ± 4.8</td>
<td>23.3 ± 4.2 *</td>
</tr>
<tr>
<td>HR$_{\text{max}}$ (bpm)</td>
<td>193 ± 11.0</td>
<td>190 ± 6.0</td>
</tr>
<tr>
<td>RPE$_{\text{max}}$ (AU)</td>
<td>18.8 ± 2.1</td>
<td>19.5 ± 1.1</td>
</tr>
<tr>
<td>LA$_{\text{peak}}$ (mmol·L$^{-1}$)</td>
<td>9.1 ± 1.9</td>
<td>8.8 ± 1.3</td>
</tr>
<tr>
<td>t$_{\text{lim}}$ (min)</td>
<td>7.5 ± 1.7</td>
<td>6.7 ± 1.1</td>
</tr>
</tbody>
</table>

*P<0.05 in relation to pre moment to the same group. Dif = Difference; (P/T/N) = Positive/Trivial/Negative
Table 4 Mean ± standard deviation (SD), difference (90% CI), magnitude of inference, and significance level for group × time interaction (P) for the variables in the time trial of 10 km (min), average speed (AS) 10 km (km h⁻¹), HR_max (bpm), RPE_max (AU) and LA_peak (mmol · L⁻¹), obtained from the 10 km track performance.

<table>
<thead>
<tr>
<th>Variable</th>
<th>GVP (n=8)</th>
<th>GVO₂ (n=6)</th>
<th>Pre Post Dif. (90% CI)</th>
<th>Inference (P/T/N)</th>
<th>Pre Post Dif. (90% CI)</th>
<th>Inference (P/T/N)</th>
<th>Group × time interaction (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (min)</td>
<td>Pre 41.3 ± 2.4</td>
<td>Post 39.9 ± 2.7</td>
<td>-1.4 [-2.5, -0.3]</td>
<td>Likely 0.1/91</td>
<td>Pre 40.1 ± 3.4</td>
<td>Post 39.2 ± 2.9</td>
<td>-0.9 [-1.6, -0.2]</td>
</tr>
<tr>
<td>AS 10-km</td>
<td>Pre 14.6 ± 0.9</td>
<td>Post 15.1 ± 1.1</td>
<td>0.6 [0.1, 1.0]</td>
<td>Likely 0.92/7</td>
<td>Pre 15.1 ± 1.3</td>
<td>Post 15.4 ± 1.2</td>
<td>0.4 [0.1, 0.6]</td>
</tr>
<tr>
<td>HR_max (bpm)</td>
<td>Pre 179 ± 8.0</td>
<td>Post 179 ± 5.0</td>
<td>2.9 [-1.5, 7.3]</td>
<td>Possible 0.58/39/3</td>
<td>Pre 171 ± 10.0</td>
<td>Post 173 ± 8.0</td>
<td>6.5 [-1.0, 14.0]</td>
</tr>
<tr>
<td>RPE_max (AU)</td>
<td>Pre 18.8 ± 1.9</td>
<td>Post 18.8 ± 1.9</td>
<td>-0.1 [-0.8, 0.5]</td>
<td>Unclear 0.15/49/35</td>
<td>Pre 18 ± 2.8</td>
<td>Post 17.0 ± 2.6</td>
<td>0.0 [-0.5, 0.5]</td>
</tr>
<tr>
<td>LA_peak (mmol · L⁻¹)</td>
<td>Pre 7.8 ± 2.0</td>
<td>Post 7.7 ± 1.7</td>
<td>-0.1 [-1.7, -1.5]</td>
<td>Unclear 0.27/39/34</td>
<td>Pre 6.7 ± 0.6</td>
<td>Post 7.4 ± 0.8</td>
<td>0.7 [-0.2, -1.6]</td>
</tr>
</tbody>
</table>

* P<0.05 in relation to pre moment to the same group. Dif = Difference; (P/T/N) = Positive/Trivial/Negative
the total period of the test; therefore, even with the improvement in test duration, the occurrence of VO\textsubscript{2max} can be observed at similar intensities between the pre- and post-training, with no change in vVO\textsubscript{2max}. This does not occur with the V\text{peak} when the Kuipers et al. [23] adjustment (which takes into account the precise length of the incomplete stage) is applied. This result shows that vVO\textsubscript{2max} determined by this protocol is a less accurate alternative variable for monitoring training when possible adaptations are small. It also supports the use of V\text{peak} as a variable for monitoring and training prescription because it is sensitive to small changes caused by training. This sensitivity is of great interest since the more highly trained the athletes, the smaller the improvements will be. Even detection of these small gains would warrant a new training protocol.

As for t\text{lim} at V\text{peak} and vVO\textsubscript{2max}, no difference was found for these variables after the 4 week training program. This result deserves further consideration, however, because after the training program the participants have managed to remain at t\text{lim} the same amount of time while exercising at higher intensities. These results were similar to those of Billat et al. [2], who also found no difference at t\text{lim} after a 4 week training protocol. The t\text{lim} seems to be a variable that does not follow the changes caused by training [24]. Despite that, the application of t\text{lim} for prescribing interval training favors greater individualization of the duration of each high-intensity effort, given the large variation between subjects at t\text{lim}, even if V\text{peak} or vVO\textsubscript{2max} do not show major differences between the subjects.

No improvements were seen at VO\textsubscript{2max} in either group after the training program. Results from previous studies observed the effect of a training program on VO\textsubscript{2max} in trained endurance runners with similar training prescriptions to those used in our study [2, 31, 35]. Even without changes in VO\textsubscript{2max}, these studies have in common a significant improvement in performance, demonstrating that VO\textsubscript{2max} seems to be a less sensitive training variable, which in turn suggests that the use of other variables for monitoring adaptations may be warranted [8, 20, 26].

No changes were observed in variables HR\textsubscript{max}, L\text{Apeak}, or RPE\textsubscript{max}, either in the treadmill test or in track performance. The absence of change to these variables after training was expected because they are routinely used for the identification of physiological responses generated by the effort [17]. They serve as a parameter for identifying the maximum effort during the incremental test [14]. Thus, for already moderately trained runners such as our participants, the 4 week training period is a short time to promote changes in the said variables, especially in HR.
The correlation among V_{peak}, $V\text{VO}_2_{\text{max}}$, and performance in the present study was also observed in previous studies [3, 26]. In the present study, the GVO2 presented higher correlation of the performance with $V\text{VO}_2_{\text{max}}$ than with V_{peak}. The ability to predict performance by $V\text{VO}_2_{\text{max}}$ is related to the fact that it is a variable that shows the interaction between $V\text{VO}_2_{\text{max}}$ and running economy (RE) [3, 12, 26], which are important variables for predicting performance. However, they are not able to predict the performance as isolated variables [19], especially in individuals with similar $V\text{VO}_2_{\text{max}}$ and/or who have a high level of training [28]. Unlike the GVO2, the GVP group showed a higher correlation between V_{peak} and 10km performance in the pre-training time. Previous studies have also shown high correlations between V_{peak} and performance [11, 36]. Noakes et al. [30], in a study on expert runners over long distances (20 marathoners and 23 ultra-marathoners) with different performances, found that V_{peak} determined on a treadmill and lactate threshold (LT) were the 2 best performance predictors from 10- to 90km running performances, concluding that V_{peak} is a great predictor of performance. Even in groups presenting different correlations of each variable (V_{peak} and $V\text{VO}_2_{\text{max}}$) with performance, it was observed that both were able to predict performance, justified by the fact the 2 variables are highly interrelated [26].

Although studies show that $V\text{VO}_2_{\text{max}}$ has a great capacity for performance prediction in races ranging from 3km through ultramarathons [1, 26–28], in this study no correlation was found between $V\text{VO}_2_{\text{max}}$ and 10km performance in either the pre-training time or post-training time in either group. The fact that the runners present a similar $V\text{VO}_2_{\text{max}}$ may indicate that the $V\text{VO}_2_{\text{max}}$ is not as efficient a variable to predict the performance when individuals have similar $V\text{VO}_2_{\text{max}}$ [12]. The results demonstrated in this study have important practical implications for teams, coaches, and athletes in obtaining information about the adaptations induced by training, especially its effects on performance, given that the V_{peak} is a variable of great practicality and low financial cost because it does not require expensive equipment (gas analyzer).

Based on the results of this study, it was concluded that the training prescribed by V_{peak} promoted improvements similar to the training prescribed by $V\text{VO}_2_{\text{max}}$, in moderately trained endurance runners. Therefore, we recommend the additional use of V_{peak} associated with its time limit for endurance training prescription in recreational runners with a similar training level to that of the study participants.

Acknowledgements

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES, Brazil

References

[34] Smith TP, Coombes JS, Geraghty DP. Optimising high-intensity treadmill training using the running speed at maximal O2 uptake and the time for which this can be maintained. Eur J Appl Physiol 2003; 89: 337–343

