Horm Metab Res 2016; 48(12): 840-846
DOI: 10.1055/s-0042-118613
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

P27/CDKN1B Translational Regulators in Pituitary Tumorigenesis

C. S. Martins
1   Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
,
R. C. Camargo
2   Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
,
F. P. Saggioro
3   Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
,
L. Neder
3   Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
,
H. R. Machado
4   Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo, Brazil
,
A. C. Moreira
1   Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
,
M. de Castro
1   Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
› Author Affiliations
Further Information

Publication History

received 05 May 2016

Publication Date:
07 November 2016 (online)

Abstract

In pituitary tumors, P27(CDKN1B) is underexpressed. We aimed to clarify whether translational regulation underlies this phenomenon. This study evaluated the expression of P27/CDKN1B, its targets (CCNE1, CDK2) and translational regulators (DKC1, RPS13, miR221, miR222) and screened for DKC1 variants in sporadic pituitary adenomas. Samples were obtained during transsphenoidal surgery from 48 patients with pituitary adenomas: 10 ACTH-, 17 GH-secreting, and 21 nonfunctioning (NFPA). The control group comprised 7 normal pituitaries (NP) obtained during autopsies. Gene expression was assessed by RT-PCR and protein expression by immunohistochemistry. The 15 exons of DKC1 were sequenced. P27 protein underexpression was observed in all adenomas subtypes (p=0.001). CCNE1 mRNA (p=0.01) overexpression, but not protein, was observed in NFPA. No differential gene expression among groups was observed in CDKN1B regulators RPS13 (p=0.23) and DKC1 (p=0.34). The expression of miR221 and miR222 was similar among tumors and NP. Frequent DKC1 variants (SNPs) were found in exon 14 and in the 3′-UTR in similar frequency to NCBI-dsSNP databases. We also observed rare DKC1 variants in 11% of the studied tumor samples, indicating a high prevalence in pituitary adenomas, however, in silico studies failed to indicate deleterious effects. The high frequency of DKC1 variants may influence, in some extent, pituitary tumors development, without clear role in its tumorigenesis. Our data reinforce the P27 underexpression in pituitary adenomas and provide further evidence of the post-translational machinery involvement, although this phenomenon cannot be explained either by mis-expression of P27 translational regulators – DKC1, RPS13, miR221, miR222 – or directly by DKC1 mutations.

Supporting Information

 
  • References

  • 1 Quereda V, Malumbres M. Cell cycle control of pituitary development and disease. J Mol Endocrinol 2009; 42: 75-86
  • 2 Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996; 85: 707-720
  • 3 Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, Fend F, Graw J, Atkinson MJ. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006; 103: 15558-15563
  • 4 Georgitsi M. MEN-4 and other multiple endocrine neoplasias due to cyclin-dependent kinase inhibitors (p27(Kip1) and p18(INK4C)) mutations. Best Pract Res Clin Endocrinol Metab 2010; 24: 425-437
  • 5 Lloyd RV, Jin L, Qian X, Kulig E. Aberrant p27kip1 expression in endocrine and other tumors. Am J Pathol 1997; 150: 401-407
  • 6 Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW. p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 1999; 154: 313-323
  • 7 Lidhar K, Korbonits M, Jordan S, Khalimova Z, Kaltsas G, Lu X, Clayton RN, Jenkins PJ, Monson JP, Besser GM, Lowe DG, Grossman AB. Low expression of the cell cycle inhibitor p27Kip1 in normal corticotroph cells, corticotroph tumors, and malignant pituitary tumors. J Clin Endocrinol Metab 1999; 84: 3823-3830
  • 8 Bamberger CM, Fehn M, Bamberger AM, Ludecke DK, Beil FU, Saeger W, Schulte HM. Reduced expression levels of the cell-cycle inhibitor p27Kip1 in human pituitary adenomas. Eur J Endocrinol 1999; 140: 250-255
  • 9 Jin L, Qian X, Kulig E, Sanno N, Scheithauer BW, Kovacs K, Young Jr WF, Lloyd RV. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries. Am J Pathol 1997; 151: 509-519
  • 10 Dahia PL, Aguiar RC, Honegger J, Fahlbush R, Jordan S, Lowe DG, Lu X, Clayton RN, Besser GM, Grossman AB. Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 1998; 16: 69-76
  • 11 Tanaka C, Yoshimoto K, Yang P, Kimura T, Yamada S, Moritani M, Sano T, Itakura M. Infrequent mutations of p27Kip1 gene and trisomy 12 in a subset of human pituitary adenomas. J Clin Endocrinol Metab 1997; 82: 3141-3147
  • 12 Takeuchi S, Koeffler HP, Hinton DR, Miyoshi I, Melmed S, Shimon I. Mutation and expression analysis of the cyclin-dependent kinase inhibitor gene p27/Kip1 in pituitary tumors. J Endocrinol 1998; 157: 337-341
  • 13 Yoshino A, Katayama Y, Ogino A, Watanabe T, Yachi K, Ohta T, Komine C, Yokoyama T, Fukushima T. Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 2007; 83: 153-162
  • 14 Korbonits M, Chahal HS, Kaltsas G, Jordan S, Urmanova Y, Khalimova Z, Harris PE, Farrell WE, Claret FX, Grossman AB. Expression of phosphorylated p27(Kip1) protein and Jun activation domain-binding protein 1 in human pituitary tumors. J Clin Endocrinol Metab 2002; 87: 2635-2643
  • 15 Musat M, Korbonits M, Kola B, Borboli N, Hanson MR, Nanzer AM, Grigson J, Jordan S, Morris DG, Gueorguiev M, Coculescu M, Basu S, Grossman AB. Enhanced protein kinase B/Akt signalling in pituitary tumours. Endocr Relat Cancer 2005; 12: 423-433
  • 16 Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC. miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell Physiol 2005; 204: 280-285
  • 17 Amaral FC, Torres N, Saggioro F, Neder L, Machado HR, Silva Jr. WA, Moreira AC, Castro M. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 2009; 94: 320-323
  • 18 de Lima DS, Martins CS, Paixao BM, Amaral FC, Colli LM, Saggioro FP, Neder L, Machado HR, dos Santos AR, Pinheiro DG, Moreira AC, Silva Jr. WA, Castro M. SAGE analysis highlights the putative role of underexpression of ribosomal proteins in GH-secreting pituitary adenomas. Eur J Endocrinol 2012; 167: 759-768
  • 19 Zhang C, Kang C, You Y, Pu P, Yang W, Zhao P, Wang G, Zhang A, Jia Z, Han L, Jiang H. Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 2009; 34: 1653-1660
  • 20 Guo X, Shi Y, Gou Y, Li J, Han S, Zhang Y, Huo J, Ning X, Sun L, Chen Y, Sun S, Fan D. Human ribosomal protein S13 promotes gastric cancer growth through down-regulating p27(Kip1). J Cell Mol Med 2011; 15: 296-306
  • 21 Coleman J, Miskimins WK. Structure and activity of the internal ribosome entry site within the human p27 Kip1 5′-untranslated region. RNA Biol 2009; 6: 84-89
  • 22 Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W, Rego E, Ruggero D. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 2006; 312: 902-906
  • 23 Bellodi C, Krasnykh O, Haynes N, Theodoropoulou M, Peng G, Montanaro L, Ruggero D. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res 2010; 70: 6026-6035
  • 24 Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM, Montori VM. The diagnosis of Cushing’s syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2008; 93: 1526-1540
  • 25 Elias PC, Lugao HB, Pereira MC, Machado HR, Castro M, Moreira AC. Discordant nadir GH after oral glucose and IGF-I levels on treated acromegaly: refining the biochemical markers of mild disease activity. Horm Metab Res 2010; 42: 50-55
  • 26 Cury ML, Fernandes JC, Machado HR, Elias LL, Moreira AC, Castro M. Non-functioning pituitary adenomas: clinical feature, laboratorial and imaging assessment, therapeutic management and outcome. Arq Bras Endocrinol Metabol 2009; 53: 31-39
  • 27 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402-408
  • 28 Tassan JP, Schultz SJ, Bartek J, Nigg EA. Cell cycle analysis of the activity, subcellular localization, and subunit composition of human CAK (CDK-activating kinase). J Cell Biol 1994; 127: 467-478
  • 29 Zhao H, Bauzon F, Bi E, Yu JJ, Fu H, Lu Z, Cui J, Jeon H, Zang X, Ye BH, Zhu L. Substituting threonine 187 with alanine in p27Kip1 prevents pituitary tumorigenesis by two-hit loss of Rb1 and enhances humoral immunity in old age. J Biol Chem 2015; 290: 5797-5809
  • 30 Knight SW, Heiss NS, Vulliamy TJ, Greschner S, Stavrides G, Pai GS, Lestringant G, Varma N, Mason PJ, Dokal I, Poustka A. X-linked dyskeratosis congenita is predominantly caused by missense mutations in the DKC1 gene. Am J Hum Genet 1999; 65: 50-58
  • 31 Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073-1081
  • 32 Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Meth 2010; 7: 248-249
  • 33 Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol 1991; 220: 49-65
  • 34 Roussel-Gervais A, Bilodeau S, Vallette S, Berthelet F, Lacroix A, Figarella-Branger D, Brue T, Drouin J. Cooperation between cyclin E and p27(Kip1) in pituitary tumorigenesis. Mol Endocrinol 2010; 24: 1835-1845
  • 35 Liu NA, Jiang H, Ben-Shlomo A, Wawrowsky K, Fan XM, Lin S, Melmed S. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci USA 2011; 108: 8414-8419
  • 36 Fang Y, Wang Y, Wang Y, Meng Y, Zhu J, Jin H, Li J, Zhang D, Yu Y, Wu XR, Huang C. A new tumour suppression mechanism by p27Kip1: EGFR down-regulation mediated by JNK/c-Jun pathway inhibition. Biochem J 2014; 463: 383-392
  • 37 Ahn SH, Jeong EH, Lee TG, Kim SY, Kim HR, Kim CH. Gefitinib induces cytoplasmic translocation of the CDK inhibitor p27 and its binding to a cleaved intermediate of caspase 8 in non-small cell lung cancer cells. Cell Oncol (Dordr) 2014; 37: 377-386
  • 38 Musat M, Korbonits M, Pyle M, Gueorguiev M, Kola B, Morris DG, Powell M, Dumitrache C, Poiana C, Grossman AB. The expression of the F-box protein Skp2 is negatively associated with p27 expression in human pituitary tumors. Pituitary 2002; 5: 235-242
  • 39 Liu W, Asa SL, Ezzat S. Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 independent of PTEN in pituitary corticotroph cells. Brain Pathol 2002; 12: 412-419
  • 40 Lee M, Theodoropoulou M, Graw J, Roncaroli F, Zatelli MC, Pellegata NS. Levels of p27 sensitize to dual PI3K/mTOR inhibition. Mol Cancer Ther 2011; 10: 1450-1459
  • 41 Garofalo M, Quintavalle C, Romano G, Croce CM, Condorelli G. miR221/222 in cancer: their role in tumor progression and response to therapy. Curr Mol Med 2012; 12: 27-33
  • 42 Cochrane DR, Cittelly DM, Richer JK. Steroid receptors and microRNAs: relationships revealed. Steroids 2011; 76: 1-10
  • 43 Rainer J, Ploner C, Jesacher S, Ploner A, Eduardoff M, Mansha M, Wasim M, Panzer-Grümayer R, Trajanoski Z, Niederegger H, Kofler R. Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia 2009; 23: 746-752
  • 44 Penzo M, Casoli L, Ceccarelli C, Trere D, Ludovini V, Crino L, Montanaro L. DKC1 gene mutations in human sporadic cancer. Histol Histopathol 2013; 28: 365-372