Horm Metab Res 2017; 49(04): 296-300
DOI: 10.1055/s-0042-118459
Review

PKA and Apicomplexan Parasite Diseases

M. Haidar
1   Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
2   Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
,
G. Ramdani
1   Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
2   Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
3   Departments of Medicine, University of California, San Diego, La Jolla, California, USA
,
E. J. Kennedy
4   Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
,
G. Langsley
1   Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
2   Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
› Author Affiliations

Abstract

The cAMP-dependent protein kinase PKA is a well-characterized member of the serine-threonine protein AGC kinase family and is the effector kinase of cAMP signaling. As such, PKA is involved in the control of a wide variety of cellular processes including metabolism, cell growth, gene expression and apoptosis. cAMP-dependent PKA signaling pathways play important roles during infection and virulence of various pathogens. Since fluxes in cAMP are involved in multiple intracellular functions, a variety of different pathological infectious processes can be affected by PKA signaling pathways. Here, we highlight some features of cAMP-PKA signaling that are relevant to Plasmodium falciparum-infection of erythrocytes and present an update on AKAP targeting of PKA in PGE2 signaling via EP4 in Theileria annulata-infection of leukocytes and discuss cAMP-PKA signling in Toxoplasma.



Publication History

Received: 29 June 2016

Accepted: 28 September 2016

Article published online:
11 November 2016

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Francis SH, Corbin JD. Structure and function of cyclic nucleotide-dependent protein kinases. Annu Rev Physiol 1994; 56: 237-272
  • 2 Cadd G, McKnight GS. Distinct patterns of cAMP-dependent protein kinase gene expression in mouse brain. Neuron 1989; 3: 71-79
  • 3 Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP. PKA: lessons learned after twenty years. Biochim Biophys Acta 2013; 1834: 1271-1278
  • 4 Rich TC, Fagan KA, Tse TE, Schaack J, Cooper DM, Karpen JW. A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc Natl Acad Sci U S A 2001; 98: 13049-13054
  • 5 Chen X, Dai JC, Orellana SA, Greenfield EM. Endogenous protein kinase inhibitor gamma terminates immediate-early gene expression induced by cAMP-dependent protein kinase (PKA) signaling: termination depends on PKA inactivation rather than PKA export from the nucleus. J Biol Chem 2005; 280: 2700-2707
  • 6 Pidoux G, Tasken K. Specificity and spatial dynamics of protein kinase A signaling organized by A-kinase-anchoring proteins. J Mol Endocrinol 2010; 44: 271-284
  • 7 Wong W, Scott JD. AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 2004; 5: 959-970
  • 8 Merckx A, Echalier A, Langford K, Sicard A, Langsley G, Joore J, Doerig C, Noble M, Endicott J. Structures of P. falciparum protein kinase 7 identify an activation motif and leads for inhibitor design. Structure 2008; 16: 228-238
  • 9 Sugi T, Ma YF, Tomita T, Murakoshi F, Eaton MS, Yakubu R, Han B, Tu V, Kato K, Kawazu S, Gupta N, Suvorova ES, White MW, Kim K, Weiss LM. Toxoplasma gondii Cyclic AMP-Dependent Protein Kinase Subunit 3 Is Involved in the Switch from Tachyzoite to Bradyzoite Development. MBio 2016; 7 pii: e00755-16 DOI: 10.1128/mBio.00755-16.
  • 10 Bandje K, Naissant B, Bigey P, Lohezic M, Vayssieres M, Blaud M, Kermasson L, Lopez-Rubio JJ, Langsley G, Lavazec C, Deloron P, Merckx A. Characterization of an A-kinase anchoring protein-like suggests an alternative way of PKA anchoring in Plasmodium falciparum. Malaria J 2016; 15: 248
  • 11 Rached FB, Ndjembo-Ezougou C, Chandran S, Talabani H, Yera H, Dandavate V, Bourdoncle P, Meissner M, Tatu U, Langsley G. Construction of a Plasmodium falciparum Rab-interactome identifies CK1 and PKA as Rab-effector kinases in malaria parasites. Biol Cell 2012; 104: 34-47
  • 12 Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov 2014; 13: 290-314
  • 13 Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007; 76: 481-511
  • 14 Costanzo V, Robertson K, Ying CY, Kim E, Avvedimento E, Gottesman M, Grieco D, Gautier J. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage. Mol Cell 2000; 6: 649-659
  • 15 Costanzo V, Avvedimento EV, Gottesman ME, Gautier J, Grieco D. Protein kinase A is required for chromosomal DNA replication. Curr Biol 1999; 9: 903-906
  • 16 Smith A, Ward MP, Garrett S, Yeast PKA. represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 1998; 17: 3556-3564
  • 17 Gerits N, Mikalsen T, Kostenko S, Shiryaev A, Johannessen M, Moens U. Modulation of F-actin rearrangement by the cyclic AMP/cAMP-dependent protein kinase (PKA) pathway is mediated by MAPK-activated protein kinase 5 and requires PKA-induced nuclear export of MK5. J Biol Chem 2007; 282: 37232-37243
  • 18 Liu F, Verin AD, Borbiev T, Garcia JG. Role of cAMP-dependent protein kinase A activity in endothelial cell cytoskeleton rearrangement. Am J Physiol Lung Cell Mol Physiol 2001; 280: L1309-L1317
  • 19 Mayr B, Montminy M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2001; 2: 599-609
  • 20 Wu Z, Huang X, Feng Y, Handschin C, Feng Y, Gullicksen PS, Bare O, Labow M, Spiegelman B, Stevenson SC. Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proc Natl Acad Sci USA 2006; 103: 14379-14384
  • 21 Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB. Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 2010; 285: 142-152
  • 22 Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 1999; 68: 821-861
  • 23 Liu M, Simon MI. Regulation by cAMP-dependent protein kinease of a G-protein-mediated phospholipase C. Nature 1996; 382: 83-87
  • 24 Yoon YM, Oh CD, Kang SS, Chun JS. Protein kinase A regulates chondrogenesis of mesenchymal cells at the post-precartilage condensation stage via protein kinase C-alpha signaling. J Bone Miner Res 2000; 15: 2197-2205
  • 25 Cosentino C, Di Domenico M, Porcellini A, Cuozzo C, De Gregorio G, Santillo MR, Agnese S, Di Stasio R, Feliciello A, Migliaccio A, Avvedimento EV. p85 regulatory subunit of PI3K mediates cAMP-PKA and estrogens biological effects on growth and survival. Oncogene 2007; 26: 2095-2103
  • 26 Ciullo I, Diez-Roux G, Di Domenico M, Migliaccio A, Avvedimento EV. cAMP signaling selectively influences Ras effectors pathways. Oncogene 2001; 20: 1186-1192
  • 27 Wagner 2nd LE, Li WH, Yule DI. Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the functionally important sites in the S2+ and S2- splice variants. J Biol Chem 2003; 278: 45811-45817
  • 28 Zhong H, SuYang H, Erdjument-Bromage H, Tempst P, Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 1997; 89: 413-424
  • 29 Zhang L, Duan CJ, Binkley C, Li G, Uhler MD, Logsdon CD, Simeone DM. A transforming growth factor beta-induced Smad3/Smad4 complex directly activates protein kinase A. Mol Cell Biol 2004; 24: 2169-2180
  • 30 Dobbelaere D, Heussler V. Transformation of leukocytes by Theileria parva and T. annulata. Annu Rev Microbiol 1999; 53: 1-42
  • 31 Somerville RP, Adamson RE, Brown CG, Hall FR. Metastasis of Theileria annulata macroschizont-infected cells in scid mice is mediated by matrix metalloproteinases. Parasitology 1998; 116 Pt 3 223-228
  • 32 Guergnon J, Dessauge F, Traincard F, Cayla X, Rebollo A, Bost PE, Langsley G, Garcia A. A PKA survival pathway inhibited by DPT-PKI, a new specific cell permeable PKA inhibitor, is induced by T. annulata in parasitized B-lymphocytes. Apoptosis 2006; 11: 1263-1273
  • 33 Dessauge F, Hilaly S, Baumgartner M, Blumen B, Werling D, Langsley G. c-Myc activation by Theileria parasites promotes survival of infected B-lymphocytes. Oncogene 2005; 24: 1075-1083
  • 34 Haidar M, Echebli N, Ding Y, Kamau E, Langsley G. Transforming Growth Factor beta2 Promotes Transcription of COX2 and EP4, Leading to a Prostaglandin E2-Driven Autostimulatory Loop That Enhances Virulence of Theileria annulata-Transformed Macrophages. Infect Immun 2015; 83: 1869-1880
  • 35 Collins SP, Uhler MD. Characterization of PKIgamma, a novel isoform of the protein kinase inhibitor of cAMP-dependent protein kinase. J Biol Chem 1997; 272: 18169-18178
  • 36 Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000; 69: 145-182
  • 37 Breyer RM, Bagdassarian CK, Myers SA, Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 2001; 41: 661-690
  • 38 Regan JW. EP2 and EP4 prostanoid receptor signaling. Life Sci 2003; 74: 143-153
  • 39 Lizcano JM, Morrice N, Cohen P. Regulation of BAD by cAMP-dependent protein kinase is mediated via phosphorylation of a novel site, Ser155. Biochem J 2000; 349: 547-557
  • 40 Wang Y, Ho TG, Bertinetti D, Neddermann M, Franz E, Mo GC, Schendowich LP, Sukhu A, Spelts RC, Zhang J, Herberg FW, Kennedy EJ. Isoform-selective disruption of AKAP-localized PKA using hydrocarbon stapled peptides. ACS Chem Biol 2014; 9: 635-642
  • 41 Flaherty BR, Wang Y, Trope EC, Ho TG, Muralidharan V, Kennedy EJ, Peterson DS. The Stapled AKAP Disruptor Peptide STAD-2 Displays Antimalarial Activity through a PKA-Independent Mechanism. PloS One 2015; 10: e0129239
  • 42 Sapio L, Di Maiolo F, Illiano M, Esposito A, Chiosi E, Spina A, Naviglio S. Targeting protein kinase A in cancer therapy: an update. EXCLI J 2014; 13: 843-855
  • 43 Danial NN, Walensky LD, Zhang CY, Choi CS, Fisher JK, Molina AJ, Datta SR, Pitter KL, Bird GH, Wikstrom JD, Deeney JT, Robertson K, Morash J, Kulkarni A, Neschen S, Kim S, Greenberg ME, Corkey BE, Shirihai OS, Shulman GI, Lowell BB, Korsmeyer SJ. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat Med 2008; 14: 144-153
  • 44 Danial NN. BAD: undertaker by night, candyman by day. Oncogene 2008; 27 (Suppl. 01) S53-S70
  • 45 Russo P, Catassi A, Cesario A, Servent D. Development of novel therapeutic strategies for lung cancer: targeting the cholinergic system. Curr Med Chem 2006; 13: 3493-3512
  • 46 WHO . Severe falciparum malaria. World Health Organization, Communicable Diseases Cluster. Trans R Soc Trop Med Hyg 2000; 94 (Suppl. 01) S1-S90
  • 47 Wurtz N, Desplans J, Parzy D. Phenotypic and transcriptomic analyses of Plasmodium falciparum protein kinase A catalytic subunit inhibition. Parasitol Res 2009; 105: 1691-1699
  • 48 Bouyer G, Reininger L, Ramdani G, DPhillips L, Sharma V, Egee S, Langsley G, Lasonder E. Plasmodiumfalciparum infection induces dynamic changes in the erythrocyte phospho-proteome. Blood Cell Mol Dis 2016; 58: 35-44
  • 49 Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, Alano P. The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. J Proteome Res 2012; 11: 5323-5337
  • 50 Lasonder E, Green JL, Grainger M, Langsley G, Holder AA. Extensive differential protein phosphorylation as intraerythrocytic Plasmodium falciparum schizonts develop into extracellular invasive merozoites. Proteomics 2015; 15: 2716-2729
  • 51 Merckx A, Bouyer G, Thomas SL, Langsley G, Egee S. Anion channels in Plasmodium-falciparum-infected erythrocytes and protein kinase A. Trends Parasitol 2009; 25: 139-144
  • 52 Merckx A, Nivez MP, Bouyer G, Alano P, Langsley G, Deitsch K, Thomas S, Doerig C, Egee S. Plasmodium falciparum regulatory subunit of cAMP-dependent PKA and anion channel conductance. PLoS Pathog 2008; 4: e19
  • 53 Ramdani G, Langsley G. ATP, an extracellular signaling molecule in red blood cells: a messenger for malaria?. Biomed J 2014; 37: 284-292
  • 54 Dawn A, Singh S, More KR, Siddiqui FA, Pachikara N, Ramdani G, Langsley G, Chitnis CE. The central role of cAMP in regulating Plasmodium falciparum merozoite invasion of human erythrocytes. PLoS Pathog 2014; 10: e1004520
  • 55 Ramdani G, Naissant B, Thompson E, Breil F, Lorthiois A, Dupuy F, Cummings R, Duffier Y, Corbett Y, Mercereau-Puijalon O, Vernick K, Taramelli D, Baker DA, Langsley G, Lavazec C. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission. PLoS Pathog 2015; 11: e1004815
  • 56 Kilunga Kubata B, Eguchi N, Urade Y, Yamashita K, Mitamura T, Tai K, Hayaishi O, Horii T. Plasmodium falciparum produces prostaglandins that are pyrogenic, somnogenic, and immunosuppressive substances in humans. J Exp Med 1998; 188: 1197-1202
  • 57 Kuesap J, Na-Bangchang K. Possible role of heme oxygenase-1 and prostaglandins in the pathogenesis of cerebral malaria: heme oxygenase-1 induction by prostaglandin D(2) and metabolite by a human astrocyte cell line. Korean J Parasitol 2010; 48: 15-21
  • 58 Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong’echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci 2011; 7: 1427-1442
  • 59 Perkins DJ, Moore JM, Otieno J, Shi YP, Nahlen BL, Udhayakumar V, Lal AA. In vivo acquisition of hemozoin by placental blood mononuclear cells suppresses PGE2, TNF-alpha, and IL-10. Biochem Biophys Res Commun 2003; 311: 839-846
  • 60 Perkins DJ, Kremsner PG, Weinberg JB. Inverse relationship of plasma prostaglandin E2 and blood mononuclear cell cyclooxygenase-2 with disease severity in children with Plasmodium falciparum malaria. J Infect Dis 2001; 183: 113-118
  • 61 Anyona SB, Kempaiah P, Raballah E, Davenport GC, Were T, Konah SN, Vulule JM, Hittner JB, Gichuki CW, Ong’echa JM, Perkins DJ. Reduced systemic bicyclo-prostaglandin-E2 and cyclooxygenase-2 gene expression are associated with inefficient erythropoiesis and enhanced uptake of monocytic hemozoin in children with severe malarial anemia. Am J Hematol 2012; 87: 782-789
  • 62 Xiao J, Li Y, Prandovszky E, Karuppagounder SS, Talbot Jr. CC, Dawson VL, Dawson TM, Yolken RH. MicroRNA-132 dysregulation in Toxoplasma gondii infection has implications for dopamine signaling pathway. Neuroscience 2014; 268: 128-138
  • 63 Kurokawa H, Kato K, Iwanaga T, Sugi T, Sudo A, Kobayashi K, Gong H, Takemae H, Recuenco FC, Horimoto T, Akashi H. Identification of Toxoplasma gondii cAMP dependent protein kinase and its role in the tachyzoite growth. PloS One 2011; 6: e22492
  • 64 Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij JP, Carruthers VB, Niles JC, Lourido S. A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes. Cell 2016; 166: 1423-1435.e12
  • 65 Hehl AB, Basso WU, Lippuner C, Ramakrishnan C, Okoniewski M, Walker RA, Grigg ME, Smith NC, Deplazes P. Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genomics 2015; 16: 66
  • 66 Hatzelmann A, Morcillo EJ, Lungarella G, Adnot S, Sanjar S, Beume R, Schudt C, Tenor H. The preclinical pharmacology of roflumilast – a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2010; 23: 235-256
  • 67 Kang BY, Kim E, Kim TS. Regulatory mechanisms and their therapeutic implications of interleukin-12 production in immune cells. Cell Signal 2005; 17: 665-673
  • 68 Beshay E, Croze F, Prud’homme GJ. The phosphodiesterase inhibitors pentoxifylline and rolipram suppress macrophage activation and nitric oxide production in vitro and in vivo. Clin Immunol 2001; 98: 272-279
  • 69 Shenoy P, Agarwal V. Phosphodiesterase inhibitors in the management of autoimmune disease. Autoimmun Rev 2010; 9: 511-515
  • 70 Sullivan Jr. WJ, Jeffers V. Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev 2012; 36: 717-733
  • 71 Lyons RE, McLeod R, Roberts CW. Toxoplasma gondii tachyzoite-bradyzoite interconversion. Trends Parasitol 2002; 18: 198-201
  • 72 Afifia MA, Jiman-Fatania A, Al-Rabiaa MW, Al-Hussainy NH. Application of a phosphodiesterase-4 (PDE4) inhibitor to abort chronic toxoplasmosis and to mitigate consequential pathological changes. J Microscop Ultrastruct 2014; 2: 94-99
  • 73 Choi WY, Nam HW, Youn JH, Kim DJ, Kim WK, Kim WS. The effect of cyclic AMP on the growth of Toxoplasma gondii in vitro. Kisaengchunghak Chapchi 1990; 28: 71-78
  • 74 Gomes AF, Magalhaes KG, Rodrigues RM, de Carvalho L, Molinaro R, Bozza PT, Barbosa HS. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasite Vector 2014; 7: 47
  • 75 Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD. Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 2010; 465: 359-362