Der Nuklearmediziner 2016; 39(04): 279-286
DOI: 10.1055/s-0042-113844
Neurobildgebung
© Georg Thieme Verlag KG Stuttgart · New York

Aminosäure-PET bei Hirntumoren

Amino Acid PET in Brain Tumors
K.-J. Langen
1   Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Jülich
2   Klinik für Nuklearmedizin, Universitätsklinikum Aachen, Aachen
,
N. Galldiks
1   Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich, Jülich
3   Klinik und Poliklinik für Neurologie, Universitätsklinikum Köln, Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
14 December 2016 (online)

Zusammenfassung

In der Hirntumordiagnostik hat die PET mit radioaktiv markierten Aminosäuren in den letzten Jahren zunehmend an Bedeutung gewonnen und ist in vielen Zentren bereits als ergänzendes Diagnoseverfahren neben der MRT etabliert. Die Aminosäure-PET bietet wichtige Zusatzinformationen bei der diagnostischen Zuordnung unklarer zerebraler Raumforderungen und eine verbesserte Darstellung der Tumorausdehnung von zerebralen Gliomen, welche bei der Planung einer Biopsie, eines neurochirurgischen Eingriffs und einer Bestrahlung wichtige Hilfestellung bieten kann. Des Weiteren können prognostische Informationen gewonnen werden, ein Tumorprogress oder -rezidiv besser von unspezifischen posttherapeutischen Veränderungen in der MRT differenziert werden sowie Therapieeffekte zuverlässiger und frühzeitiger als mit der MRT beurteilt werden.

Abstract

PET using radiolabelled amino acids has gained increasing interest in the diagnostics of brain tumors in the last years and has been established in many neurooncological centers as a complementary diagnostic tool to MRI. Amino acid PET offers important additional information in the diagnosis of unclear space-occupying brain lesions and an improved delineation of tumor extent of cerebral gliomas which is helpful for biopsy guidance, planning of surgery and radiation therapy. Furthermore, amino acid imaging may provide prognostic information, helps to differentiate tumor progression and recurrence from unspecific posttherapeutic changes in the tissue and to detect the metabolic response during tumor therapy earlier than with conventional MRI.

 
  • Literatur

  • 1 Albert NL, Weller M, Suchorska B et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol 2016; 18: 1199-1208
  • 2 Albert NL, Winkelmann I, Suchorska B et al. Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20–40 min scans. Eur J Nucl Med Mol Imaging 2016; 43: 1105-1114
  • 3 Basu S, Alavi A. Molecular imaging (PET) of brain tumors. Neuroimaging Clin N Am 2009; 19: 625-646
  • 4 Brandsma D, van den Bent MJ. Pseudoprogression and pseudoresponse in the treatment of gliomas. Curr Opin Neurol 2009; 22: 633-638
  • 5 Buchmann N, Klasner B, Gempt J et al. (18)F-Fluoroethyl-L-Thyrosine positron emission tomography to delineate tumor residuals after glioblastoma resection: A comparison with standard postoperative magnetic resonance imaging. World Neurosurg 2016; 89: 420-426
  • 6 Calcagni ML, Galli G, Giordano A et al. Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for glioma grading: assessment of individual probability of malignancy. Clin Nucl Med 2011; 36: 841-847
  • 7 Chen W. Clinical applications of PET in brain tumors. J Nucl Med 2007; 48: 1468-1481
  • 8 Cicone F, Filss CP, Minniti G et al. Volumetric assessment of recurrent or progressive gliomas: comparison between F-DOPA PET and perfusion-weighted MRI. Eur J Nucl Med Mol Imaging 2015; 42: 905-915
  • 9 Cicone F, Minniti G, Romano A et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging 2015; 42: 103-111
  • 10 Collet S, Valable S, Constans JM et al. [(18)F]-fluoro-L-thymidine PET and advanced MRI for preoperative grading of gliomas. Neuroimage Clin 2015; 8: 448-454
  • 11 Dhermain FG, Hau P, Lanfermann H et al. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 2010; 9: 906-920
  • 12 Dunet V, Pomoni A, Hottinger A et al. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol 2016; 18: 426-434
  • 13 Floeth FW, Pauleit D, Sabel M et al. Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 2007; 48: 519-527
  • 14 Galldiks N, Dunkl V, Kracht LW et al. Volumetry of [(1)(1)C]-methionine positron emission tomographic uptake as a prognostic marker before treatment of patients with malignant glioma. Mol Imaging 2012; 11: 516-527
  • 15 Galldiks N, Dunkl V, Stoffels G et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 2015; 42: 685-695
  • 16 Galldiks N, Filss CP, Goldbrunner R et al. Discrepant MR and [(18)F]Fluoroethyl-L-Tyrosine PET imaging findings in a patient with bevacizumab failure. Case Rep Oncol 2012; 5: 490-494
  • 17 Galldiks N, Kracht LW, Burghaus L et al. Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 2006; 33: 516-524
  • 18 Galldiks N, Kracht LW, Burghaus L et al. Patient-tailored, imaging-guided, long-term temozolomide chemotherapy in patients with glioblastoma. Mol Imaging 2010; 9: 40-46
  • 19 Galldiks N, Langen K, Holy R et al. Assessment of treatment response in patients with glioblastoma using [18F]Fluoroethyl-L-Tyrosine PET in comparison to MRI. J Nucl Med 2012; 53: 1048-1057
  • 20 Galldiks N, Langen KJ. Applications of PET imaging of neurological tumors with radiolabeled amino acids. Q J Nucl Med Mol Im 2015; 59: 70-82
  • 21 Galldiks N, Langen KJ, Pope WB. From the clinician’s point of view – What is the status quo of positron emission tomography in patients with brain tumors?. Neuro Oncol 2015; 17: 1434-1444
  • 22 Galldiks N, Stoffels G, Filss C et al. The use of dynamic O-(2-18F-fluoroethyl)-L-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol 2015; 1293-1300
  • 23 Galldiks N, Stoffels G, Filss CP et al. Role of O-(2-18F-Fluoroethyl)-L-Tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 2012; 53: 1367-1374
  • 24 Galldiks N, Stoffels G, Ruge MI et al. Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 2013; 54: 2046-2054
  • 25 Giovannini E, Lazzeri P, Milano A et al. Clinical applications of choline PET/CT in brain tumors. Curr Pharm Design 2015; 21: 121-127
  • 26 Grosu AL, Weber WA. PET for radiation treatment planning of brain tumours. Radiother Oncol 2010; 96: 325-327
  • 27 Habermeier A, Graf J, Sandhofer BF et al. System L amino acid transporter LAT1 accumulates O-(2-fluoroethyl)-L-tyrosine (FET). Amino acids 2015; 47: 335-344
  • 28 Hamacher K, Coenen HH. Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 2002; 57: 853-856
  • 29 Hatakeyama T, Kawai N, Nishiyama Y et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 2008; 35: 2009-2017
  • 30 Hellwig D, Ketter R, Romeike BF et al. Prospective study of p-[123I]iodo-L-phenylalanine and SPECT for the evaluation of newly diagnosed cerebral lesions: specific confirmation of glioma. Eur J Nucl Med Mol Imaging 2010; 37: 2344-2353
  • 31 Herholz K, Coope D, Jackson A. Metabolic and molecular imaging in neuro-oncology. Lancet Neurol 2007; 6: 711-724
  • 32 Herholz K, Holzer T, Bauer B et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998; 50: 1316-1322
  • 33 Hirata K, Terasaka S, Shiga T et al. (1)(8)F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging 2012; 39: 760-770
  • 34 Hutterer M, Nowosielski M, Putzer D et al. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 2011; 52: 856-864
  • 35 Hutterer MGN, Hau P, Langen KJ. Pitfalls of [F18]-FET PET in the Diagnostics of Brain Tumors. Der Nuklearmediziner 2015; 38: 1-9
  • 36 Jansen NL, Graute V, Armbruster L et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET?. Eur J Nucl Med Mol Imaging 2012; 39: 1021-1029
  • 37 Jansen NL, Suchorska B, Wenter V et al. Prognostic Significance of Dynamic 18F-FET PET in newly diagnosed astrocytic High-Grade Glioma. J Nucl Med 2015; 56: 9-15
  • 38 Jensen P, Feng L, Law I et al. TSPO imaging in glioblastoma multiforme: A direct comparison between 123I-CLINDE SPECT, 18F-FET PET, and gadolinium-enhanced MR imaging. J Nucl Med 2015; 56: 1386-1390
  • 39 Karunanithi S, Sharma P, Kumar A et al. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2013; 40: 1025-1035
  • 40 Kobayashi H, Hirata K, Yamaguchi S et al. Usefulness of FMISO-PET for glioma analysis. Neurol Med Chir 2013; 53: 773-778
  • 41 Kracht LW, Miletic H, Busch S et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004; 10: 7163-7170
  • 42 Kratochwil C, Combs SE, Leotta K et al. Intra-individual comparison of (1)(8)F-FET and (1)(8)F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol 2014; 16: 434-440
  • 43 Kunz M, Thon N, Eigenbrod S et al. Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 2011; 13: 307-316
  • 44 Langen KJ, Hamacher K, Weckesser M et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006; 33: 287-294
  • 45 Langen KJ, Pauleit D, Coenen HH. 3-[(123)I]Iodo-alpha-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2002; 29: 625-631
  • 46 Langen KJ, Watts C. Neuro-oncology: Amino acid PET for brain tumours – ready for the clinic?. Nat Rev Neurol 2016; 12: 357-376
  • 47 Levivier M, Massager N, Wikler D et al. Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J Nucl Med 2004; 45: 1146-1154
  • 48 Lizarraga KJ, Allen-Auerbach M, Czernin J et al. (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med 2014; 55: 30-36
  • 49 Lopez WO, Cordeiro JG, Albicker U et al. Correlation of (18)F-fluoroethyl tyrosine positron-emission tomography uptake values and histomorphological findings by stereotactic serial biopsy in newly diagnosed brain tumors using a refined software tool. Onco Targets Ther 2015; 8: 3803-3815
  • 50 Manabe O, Hattori N, Yamaguchi S et al. Oligodendroglial component complicates the prediction of tumour grading with metabolic imaging. Eur J Nucl Med Mol Imaging 2015; 42: 896-904
  • 51 Minamimoto R, Saginoya T, Kondo C et al. Differentiation of Brain Tumor Recurrence from Post-Radiotherapy Necrosis with 11C-Methionine PET: Visual Assessment versus Quantitative Assessment. PloS one 2015; 10: e0132515
  • 52 Mosskin M, Ericson K, Hindmarsh T et al. Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989; 30: 225-232
  • 53 Moulin-Romsee G, D‘Hondt E, de Groot T et al Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine?. Eur J Nucl Med Mol Imaging 2007; 34: 2082-2087
  • 54 Munck Af Rosenschold P, Costa J, Engelholm SA et al. Impact of [18F]-fluoro-ethyl-tyrosine PET imaging on target definition for radiation therapy of high-grade glioma. Neuro Oncol 2015; 17: 757-763
  • 55 Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep 2012; 14: 48-54
  • 56 Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. Am J Neuroradiol 2013; 34: 944-950 S941-S911
  • 57 Nowosielski M, DiFranco MD, Putzer D et al. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas. PloS one 2014; 9: e95830
  • 58 Nyuyki F, Plotkin M, Graf R et al. Potential impact of (68)Ga-DOTATOC PET/CT on stereotactic radiotherapy planning of meningiomas. Eur J Nucl Med Mol Imaging 2010; 37: 310-318
  • 59 Ohtani T, Kurihara H, Ishiuchi S et al. Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 2001; 28: 1664-1670
  • 60 Ostrom QT, Gittleman H, Liao P et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014; 16 (Suppl. 04) iv1-iv63
  • 61 Padma MV, Said S, Jacobs M et al. Prediction of pathology and survival by FDG PET in gliomas. J Neuro-Oncol 2003; 64: 227-237
  • 62 Pauleit D, Floeth F, Hamacher K et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687
  • 63 Pauleit D, Langen KJ, Floeth F et al. Can the apparent diffusion coefficient be used as a noninvasive parameter to distinguish tumor tissue from peritumoral tissue in cerebral gliomas?. J Magn Reson Imaging 2004; 20: 758-764
  • 64 Pauleit D, Stoffels G, Bachofner A et al. Comparison of (18)F-FET and (18)F-FDG PET in brain tumors. Nucl Med Biol 2009; 36: 779-787
  • 65 Piroth MD, Holy R, Pinkawa M et al. Prognostic impact of postoperative, pre-irradiation (18)F-fluoroethyl-l-tyrosine uptake in glioblastoma patients treated with radiochemotherapy. Radiother Oncol 2011; 99: 218-224
  • 66 Piroth MD, Pinkawa M, Holy R et al. Prognostic value of early [18F]fluoroethyltyrosine positron emission tomography after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2011; 80: 176-184
  • 67 Piroth MD, Pinkawa M, Holy R et al. Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas. Results of a prospective phase II study. Strahlenther Onkol 2012; 188: 334-339
  • 68 Pirotte B, Goldman S, Massager N et al. Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 2004; 101: 476-483
  • 69 Pirotte BJ, Levivier M, Goldman S et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 2009; 64: 471-481 discussion 481
  • 70 Plotkin M, Blechschmidt C, Auf G et al. Comparison of F-18 FET-PET with F-18 FDG-PET for biopsy planning of non-contrast-enhancing gliomas. Eur Radiol 2010; 20: 2496-2502
  • 71 Popperl G, Goldbrunner R, Gildehaus FJ et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of convection-enhanced delivery of paclitaxel in patients with recurrent glioblastoma. Eur J Nucl Med Mol Imaging 2005; 32: 1018-1025
  • 72 Popperl G, Gotz C, Rachinger W et al. Value of O-(2-[18F]fluoroethyl)- L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470
  • 73 Popperl G, Kreth FW, Mehrkens JH et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007; 34: 1933-1942
  • 74 Prieto E, Marti-Climent JM, Dominguez-Prado I et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 2011; 52: 865-872
  • 75 Pyka T, Gempt J, Hiob D et al. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging 2016; 43: 133-141
  • 76 Pöpperl G, Götz C, Rachinger W et al. Serial O-(2-[(18)F]fluoroethyl)-L:-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 2006; 33: 792-800
  • 77 Rapp M, Heinzel A, Galldiks N et al. Diagnostic performance of 18F-FET PET in newly diagnosed cerebral lesions suggestive of glioma. J Nucl Med 2013; 54: 229-235
  • 78 Ribom D, Eriksson A, Hartman M et al. Positron emission tomography (11)C-methionine and survival in patients with low-grade gliomas. Cancer 2001; 92: 1541-1549
  • 79 Ricci PE, Karis JP, Heiserman JE et al. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography?. Am J Neuroradiol 1998; 19: 407-413
  • 80 Rickhey M, Koelbl O, Eilles C et al. A biologically adapted dose-escalation approach, demonstrated for 18F-FET-PET in brain tumors. Strahlenther Onkol 2008; 184: 536-542
  • 81 Rieken S, Habermehl D, Giesel FL et al. Analysis of FET-PET imaging for target volume definition in patients with gliomas treated with conformal radiotherapy. Radiother Oncol 2013; 109: 487-492
  • 82 Salber D, Stoffels G, Pauleit D et al. Differential uptake of [18F]FET and [3H]l-methionine in focal cortical ischemia. Nucl Med Biol 2006; 33: 1029-1035
  • 83 Salber D, Stoffels G, Pauleit D et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med 2007; 48: 2056-2062
  • 84 Santra A, Kumar R, Sharma P et al. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol 2012; 81: 508-513
  • 85 Schillaci O, Filippi L, Manni C et al. Single-photon emission computed tomography/computed tomography in brain tumors. Semin Nucl Med 2007; 37: 34-47
  • 86 Schwarzenberg J, Czernin J, Cloughesy TF et al. Treatment Response Evaluation Using 18F-FDOPA PET in Patients with Recurrent Malignant Glioma on Bevacizumab Therapy. Clin Cancer Res 2014; 20: 3550-3559
  • 87 Smits A, Baumert BG. The Clinical Value of PET with Amino Acid Tracers for Gliomas WHO Grade II. Int J Mol Imaging 2011; 2011: 372509
  • 88 Smits A, Westerberg E, Ribom D. Adding 11C-methionine PET to the EORTC prognostic factors in grade 2 gliomas. Eur J Nucl Med Mol Imaging 2008; 35: 65-71
  • 89 Sollini M, Sghedoni R, Erba PA et al. Diagnostic performances of [18f] fluorocholine positron emission tomography in brain tumors. Q J Nucl Med Mol Imaging 2015 [Epub ahead of print]
  • 90 Stadlbauer A, Prante O, Nimsky C et al. Metabolic imaging of cerebral gliomas: spatial correlation of changes in O-(2-18F-fluoroethyl)-L-tyrosine PET and proton magnetic resonance spectroscopic imaging. J Nucl Med 2008; 49: 721-729
  • 91 Stockhammer F, Plotkin M, Amthauer H et al. Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. J Neuro-Oncol 2008; 88: 205-210
  • 92 Suchorska B, Jansen NL, Linn J et al. Biological tumor volume in 18FET-PET before radiochemotherapy correlates with survival in GBM. Neurology 2015; 84: 710-719
  • 93 Swissmedic. Swiss Agency for Therapeutic Products. Journal Swissmedic 2014; 13: 651
  • 94 Terakawa Y, Tsuyuguchi N, Iwai Y et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008; 49: 694-699
  • 95 Thon N, Kunz M, Lemke L et al. Dynamic F-FET PET in suspected WHO grade II gliomas defines distinct biological subgroups with different clinical courses. Int J Cancer 2015; 136: 2132-2145
  • 96 Tripathi M, Sharma R, Varshney R et al. Comparison of F-18 FDG and C-11 methionine PET/CT for the evaluation of recurrent primary brain tumors. Clin Nucl Med 2012; 37: 158-163
  • 97 Tsuyuguchi N, Sunada I, Iwai Y et al. Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible?. J Neurosurg 2003; 98: 1056-1064
  • 98 Unterrainer M, Schweisthal F, Suchorska B et al. Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma – does it make sense? J Nucl Med. 2016; 57: 1177-1182
  • 99 Weber DC, Zilli T, Buchegger F et al. [(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma. Radiat Oncol 2008; 3: 44
  • 100 Weckesser M, Langen KJ, Rickert CH et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours. Eur J Nucl Med Mol Imaging 2005; 32: 422-429
  • 101 Weller M, van den Bent M, Hopkins K et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 2014; 15: e395-e403
  • 102 Wen PY, Macdonald DR, Reardon DA et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010; 28: 1963-1972
  • 103 Wester HJ, Herz M, Weber W et al. Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-tyrosine for tumor imaging. J Nucl Med 1999; 40: 205-212
  • 104 Winkeler A, Boisgard R, Awde AR et al. The translocator protein ligand [(1)(8)F]DPA-714 images glioma and activated microglia in vivo. Eur J Nucl Med Mol Imaging 2012; 39: 811-823
  • 105 Wyss MT, Hofer S, Hefti M et al. Spatial heterogeneity of low-grade gliomas at the capillary level: a PET study on tumor blood flow and amino acid uptake. J Nucl Med 2007; 48: 1047-1052
  • 106 Yoon JH, Kim JH, Kang WJ et al. Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET: concordance and accuracy. Eur Radiol 2014; 24: 380-389