Endoscopic ultrasound-guided histological diagnosis of a mucinous non-neoplastic pancreatic cyst using a specially designed through-the-needle microforceps

Solitary uniloculated pancreatic cysts pose a major diagnostic dilemma. Cystic fluid carcinoembryonic antigen (CEA) concentration and cytology have low sensitivity in distinguishing mucinous from non-mucinous cysts [1], leading to frequent misdiagnoses and unnecessary surgical interventions [2]. Recently evaluated molecular markers seem very accurate, but they are not widely available in clinical practice [3].

We present the case of a 49-year-old woman who was incidentally discovered to have a 25-mm cystic pancreatic neck lesion, without apparent communication with the Wirsung duct (Fig. 1). At endoscopic ultrasound (EUS), the cyst had no septa, normal walls, and no mural nodules.

Prophylactic intravenous antibiotics were administered and EUS-guided fine-needle aspiration (FNA) was performed using a 19-gauge needle. After 2 mL of fluid were aspirated, a toothed microforceps (Moray microforceps; US Endoscopy, Mentor, Ohio, USA) was inserted through the needle into the cyst cavity. Under EUS guidance, the microforceps was opened, pushed against the cyst wall, and then pulled back in order to acquire the tissue sample.

Fig. 1 Axial T2 weighted magnetic resonance image showing a 25 × 20 mm unilocular pancreatic neck cystic lesion without communication with the Wirsung duct (arrow).

Fig. 2 View of the novel through-the-needle microforceps (Moray microforceps; US Endoscopy, Mentor, Ohio, USA) protruding from a standard 19-gauge fine-needle aspiration needle, with its cups opened. The microforceps has an outer diameter of 0.8 mm, a jaw opening width of 4.3 mm, serrated jaws designed to effectively grasp tissue, and a spring sheath to increase its flexibility. Photograph used with permission from US Endoscopy.

Fig. 3 Tissue acquisition using through-the-needle microforceps. a Endoscopic ultrasound-guided opening of the cups of the through-the-needle microforceps inside the pancreatic cyst (arrow). b The “tent sign” representing the cystic wall (arrow) grasped by the biopsy forceps and pulled back in order to acquire the tissue sample.
closed in order to obtain tissue samples (Fig. 3). Two bites of the cyst wall were taken using the biopsy microforceps, and the specimens were placed directly into formalin for histological examination. No procedural or delayed complications occurred.

Cystic fluid amylase and CEA concentrations were 692 U/L and 491 ng/ml, respectively. Histological examination revealed a fibrous wall lined by tall, columnar, mucin-producing, epithelial cells (duct-type epithelium) consistent with the diagnosis of mucinous non-neoplastic pancreatic cyst (hematoxylin and eosin staining). a Low-power field. b High-power field.

This case clearly illustrates the diagnostic challenge of pancreatic cysts. The novel through-the-needle microforceps allowed the acquisition of tissue that showed all of the histological criteria needed for a diagnosis of mucinous non-neoplastic cyst [4].

References

Bibliography
DOI http://dx.doi.org/ 10.1055/s-0042-108194
Endoscopy 2016; 48: E188–E189
© Georg Thieme Verlag KG Stuttgart - New York
ISSN 0013-726X

Corresponding author
Alberto Larghi, MD, PhD
Digestive Endoscopy Unit
Catholic University
Largo A. Gemelli 8
00168, Rome
Italy
Fax: +39-06-30156581
alberto.larghi@yahoo.it

Endoscopic ultrasound-guided tissue acquisition from pancreatic cyst wall using a novel through-the-needle microforceps.