Z Orthop Unfall 2016; 154(04): 392-397
DOI: 10.1055/s-0042-108065
Aus den Sektionen – AE Deutsche Gesellschaft für Endoprothetik
Georg Thieme Verlag KG Stuttgart · New York

Impingementfreie Bewegung nach Hüft-TEP – wie realisieren?

Impingement Free Motion in Total Hip Arthroplasty – How Can We Implement It?
K.-H. Widmer
Universität Basel, Orthopädie und Traumatologie, Kantonsspital Schaffhausen, Schweiz
› Author Affiliations
Further Information

Publication History

Publication Date:
23 June 2016 (online)

Zusammenfassung

Prothetisches Impingement und eine ungenügende Weichteilspannung stellen immer noch die Risikofaktoren dar, die in erster Linie für die Hüftgelenkluxation als eine der häufigsten Frühkomplikationen verantwortlich sind. Durch eine optimierte Komponentenausrichtung, optimiertes Prothesendesign und bestmögliche Rekonstruktion der individuellen Biomechanik kann das Risiko eines Impingements deutlich reduziert, wenn nicht gar ganz ausgeschaltet werden. Aufbauend auf Bewegungsanalysen zeigt diese Studie die Zusammenhänge zwischen der Komponentenausrichtung, dem Einfluss der Designparameter und dem erzielbaren Bewegungsspielraum auf und begründet damit das Konzept der „combined Safe-Zone“ (cSafe-Zone). Die maximale Größe dieser Zone liefert die optimalen Komponentenorientierungen für ein spezifisches Prothesensystem. Zwischen der Pfannenanteversion und der Schaftantetorsion besteht eine inverse lineare Beziehung. Größere Prothesenköpfe erlauben eine flachere Pfanneninklination, bei 28 mm empfiehlt sich eine Pfanneninklination von 40–45°, bei 32 mm von 38–42° und bei 36 mm von 35–40°. Anatomische Schäfte brauchen eine geringere Pfannenanteversion. Kurzschäfte weisen größere Variationen von CCD- und Antetorsionswinkel auf und verlangen die individuelle Anpassung der Pfannenorientierung. Die optimale Komponentenausrichtung muss für jedes Prothesensystem spezifisch ermittelt werden. Mithilfe eines computerbasierten oder dem vorgestellten mechanischen Navigations-Impaktierungssystem können die Zielvorgaben intraoperativ umgesetzt werden.

Abstract

Introduction: Prosthetic impingement and insufficient soft tissue tension are still the most important factors responsible for early dislocation after total hip arthroplasty. Optimal positioning of both prosthetic components, the stem and the socket, optimising their design and restoring individual hip biomechanics, are of the upmost importance in reducing the risk of impingement. This study describes the concept of the combined safe zone (cSafe-Zone) that provides guidelines for the optimal positioning of both components. Material and Methods: A computerised CAD model of a total hip prosthesis was used to systematically investigate the effect of design parameters, such as head-to-neck ratio, CCD shaft angle, as well as positioning parameters, such as cup inclination and cup anteversion and stem antetorsion, on the range of motion. We looked for all positioning combinations that allow the predefined range of movement (= iROM, intended range of movement) and thus define the combined safe zone. The analysis was carried out with straight stems, anatomical and short stems. The size of the cSafe-Zone was chosen as the optimising criterion and the largest cSafe-Zone was considered to define the optimal component positions. These optimal relative orientations of cup and stem were engraved onto the surface of the navigation trial head and used to position the cup during surgery. Results: This new combined safe zone is not static but dynamic; it varies in size and position and is specific for each prosthesis system. High stem antetorsion should be combined with lower cup anteversion and vice versa. Thus, cup anteversion and stem antetorsion are complementary. CCD shaft angles above 135° reduce the size of the cSafe-Zone and are therefore not recommended. Larger head sizes allow lower cup inclinations, i.e. the recommended cup inclination for a 28 mm head is 40 to 45°, for 32 mm 38 to 42° and for 36 mm 35 to 40°. This also increases the so-called jumping distance. Anatomical stems require less cup anteversion than straight stems. Conclusion: The concept of combined safe-zone delivers clear guidelines how to position both components of a total hip prosthesis in order to maximise range of movement and to reduce the risk of prosthetic impingement. It is the basis of the stem-first surgical technique. Computer-based navigation or mechanical instruments can be used to implement this new concept in surgical practice.

 
  • Literatur

  • 1 Beckmann J, Lüring C, Tingart M et al. Cup positioning in THA: current status and pitfalls. A systematic evaluation of the literature. Arch Orthop Trauma Surg 2009; 129: 863-872
  • 2 Nishii T, Sugano N, Miki H et al. Influence of component positions on dislocation: computed tomographic evaluations in a consecutive series of total hip arthroplasty. J Arthroplasty 2004; 19: 162-166
  • 3 Bader R, Barbano R, Mittelmeier W. Treatment of recurrent dislocation associated with impingement after revision total hip arthroplasty. Acta Orthop Belg 2005; 71: 98-101
  • 4 Matta JM, Shahrdar C, Ferguson T. Single-incision anterior approach for total hip arthroplasty on an orthopaedic table. Clin Orthop Relat Res 2005; 441: 115-124
  • 5 Moskal JT, Capps SG. Acetabular component positioning in total hip arthroplasty: an evidence-based analysis. J Arthroplasty 2011; 26: 1432-1437
  • 6 DʼLima DD, Urquhart AG, Buehler KO et al. The effect of the orientation of the acetabular and femoral components on the range of motion of the hip at different head-neck ratios. J Bone Joint Surg Am 2000; 82: 315-321
  • 7 Ellison P. Mathematical formulae to calculate the theoretical range of motion of prosthetic hip implants with non-circular neck geometry. Proc Inst Mech Eng H 2012; 226: 804-814
  • 8 Malik A, Maheshwari A, Dorr LD. Impingement with total hip replacement. J Bone Joint Surg Am 2007; 89: 1832-1842
  • 9 Morscher EW. Current status of acetabular fixation in primary total hip arthroplasty. Clin Orthop Relat Res 1992; 274: 172-193
  • 10 Alberton GM, High WA, Morrey BF. Dislocation after revision total hip arthroplasty: an analysis of risk factors and treatment options. J Bone Joint Surg Am 2002; 84: 1788-1792
  • 11 Hoell S, Sander M, Gosheger G et al. The minimal invasive direct anterior approach in combination with large heads in total hip arthroplasty – is dislocation still a major issue? a case control study. BMC Musculoskelet Disord 2014; 15: 80
  • 12 Moskal JT, Capps SG. Is limited incision better than standard total hip arthroplasty? A meta-analysis. Clin Orthop Relat Res 2013; 471: 1283-1294
  • 13 Lewinnek GE, Lewis JL, Tarr RR et al. Dislocation after total hip-replacement arthroplasties. J Bone Joint Surg 1978; 60: 217-220
  • 14 Callanan MC, Jarrett B, Bragdon CR et al. John Charnley Award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop Relat Res 2011; 469: 319-329
  • 15 Esposito CI, Gladnick BP, Lee YY et al. Cup position alone does not predict risk of dislocation after hip arthroplasty. J Arthroplasty 2015; 30: 109-113
  • 16 Widmer KH, Zurfluh B. Compliant positioning of total hip components for optimal range of motion. J Orthop Res 2004; 22: 815-821
  • 17 Widmer KH, Majewski M. The impact of the CCD-angle on range of motion and cup positioning in total hip arthroplasty. Clin Biomech (Bristol, Avon) 2005; 20: 723-728
  • 18 Yoshimine F. The influence of the oscillation angle and the neck anteversion of the prosthesis on the cup safe-zone that fulfills the criteria for range of motion in total hip replacements. The required oscillation angle for an acceptable cup safe-zone. J Biomech 2005; 38: 125-132
  • 19 Hisatome T, Doi H. Theoretically optimum position of the prosthesis in total hip arthroplasty to fulfill the severe range of motion criteria due to neck impingement. J Orthop Sci 2011; 16: 229-237
  • 20 Nakahara I, Takao M, Sakai T et al. Gender differences in 3D morphology and bony impingement of human hips. J Orthop Res 2011; 29: 333-339
  • 21 Maratt JD, Esposito CI, McLawhorn AS et al. Pelvic tilt in patients undergoing total hip arthroplasty: when does it matter?. J Arthroplasty 2015; 30: 387-391
  • 22 Eilander W, Harris SJ, Henkus HE et al. Functional acetabular component position with supine total hip replacement. Bone Joint J 2013; 95: 1326-1331
  • 23 Blondel B, Parratte S, Tropiano P et al. Pelvic tilt measurement before and after total hip arthroplasty. Orthop Traumatol Surg Res 2009; 95: 568-572
  • 24 Eddine TA, Migaud H, Chantelot C et al. Variations of pelvic anteversion in the lying and standing positions: analysis of 24 control subjects and implications for CT measurement of position of a prosthetic cup. Surg Radiol Anat 2001; 23: 105-110
  • 25 Polkowski GG, Nunley RM, Ruh EL et al. Does standing affect acetabular component inclination and version after THA?. Clin Orthop Relat Res 2012; 470: 2988-2994
  • 26 Lembeck B, Mueller O, Reize P et al. Pelvic tilt makes acetabular cup navigation inaccurate. Acta Orthop 2005; 76: 517-523
  • 27 Mayr E, Kessler O, Prassl A et al. The frontal pelvic plane provides a valid reference system for implantation of the acetabular cup: spatial orientation of the pelvis in different positions. Acta Orthop 2005; 76: 848-853
  • 28 Pinoit Y, May O, Girard J et al. [Low accuracy of the anterior pelvic plane to guide the position of the cup with imageless computer assistance: variation of position in 106 patients]. Rev Chir Orthop Reparatrice Appar Mot 2007; 93: 455-460
  • 29 Babisch JW, Layher F, Amiot LP. The rationale for tilt-adjusted acetabular cup navigation. J Bone Joint Surg Am 2008; 90: 357-365
  • 30 Parratte S, Pagnano MW, Coleman-Wood K et al. The 2008 Frank Stinchfield award: variation in postoperative pelvic tilt may confound the accuracy of hip navigation systems. Clin Orthop Relat Res 2009; 467: 43-49
  • 31 Rousseau MA, Lazennec JY, Boyer P et al. Optimization of total hip arthroplasty implantation: is the anterior pelvic plane concept valid?. J Arthroplasty 2009; 24: 22-26
  • 32 Nomura T, Naito M, Nakamura Y et al. An analysis of the best method for evaluating anteversion of the acetabular component after total hip replacement on plain radiographs. Bone Joint J 2014; 96-B: 597-603
  • 33 Murray DW. The definition and measurement of acetabular orientation. J Bone Joint Surg Br 1993; 75: 228-232
  • 34 Müller M, Crucius D, Perka C et al. The association between the sagittal femoral stem alignment and the resulting femoral head centre in total hip arthroplasty. Int Orthop 2011; 35: 981-987
  • 35 Müller M, Duda G, Perka C et al. The sagittal stem alignment and the stem version clearly influence the impingement-free range of motion in total hip arthroplasty: a computer model-based analysis. Int Orthop 2016; 40: 473-480
  • 36 Sariali E, Stewart T, Jin Z et al. Effect of cup abduction angle and head lateral microseparation on contact stresses in ceramic-on-ceramic total hip arthroplasty. J Biomech 2012; 45: 390-393
  • 37 Windhagen H, Chincisan A, Choi HF et al. Soft-tissue balance in short and straight stem total hip arthroplasty. Orthopedics 2015; 38: 14-20
  • 38 Dorr LD, Malik A, Dastane M et al. Combined anteversion technique for total hip arthroplasty. Clin Orthop Relat Res 2009; 467: 119-127
  • 39 Miki H, Kyo T, Sugano N. Anatomical hip range of motion after implantation during total hip arthroplasty with a large change in pelvic inclination. J Arthroplasty 2012; 27: 1641-1650
  • 40 Widmer KH. Containment versus impingement: finding a compromise for cup placement in total hip arthroplasty. Int Orthop 2007; 31: 29-33
  • 41 Moskal JT, Capps SG. Improving the accuracy of acetabular component orientation: avoiding malposition. J Am Acad Orthop Surg 2010; 18: 286-296
  • 42 Mihalko WM, Kammerzell S, Saleh KJ. Acetabular orientation with different pelvic registration landmarks. Orthopedics 2009; 32: 11-13
  • 43 Beverland DE, OʼNeill CK, Rutherford M et al. Placement of the acetabular component. Bone Joint J 2016; 98: 37-43
  • 44 Emerson jr. RH. Increased anteversion of press-fit femoral stems compared with anatomic femur. Clin Orthop Relat Res 2012; 470: 477-481