Endoscopic surveillance of head and neck cancer in patients with esophageal squamous cell carcinoma

Department of Gastrointestinal Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan

Introduction

Multiple squamous cell carcinomas (SCCs) frequently arise in the upper aerodigestive tract, referred to as the field cancerization phenomenon. The aim of this study was to elucidate the detailed clinical features of second primary head and neck (H&N) SCCs arising in patients with esophageal SCC.

Background and study aims: Multiple squamous cell carcinomas (SCCs) frequently arise in the upper aerodigestive tract, referred to as the field cancerization phenomenon. The aim of this study was to elucidate the detailed clinical features of second primary head and neck (H&N) SCCs arising in patients with esophageal SCC.

Patients and methods: A total of 818 patients underwent endoscopic resection for superficial esophageal cancer between January 2006 and December 2013. Of these, 439 patients met our inclusion criteria, and we retrospectively investigated the incidence, primary sites, and stages of second primary H&N SCCs in these patients.

Results: A total of 53 metachronous H&N SCCs developed in 40 patients after a median follow-up period of 46 months (range 9–109). The cumulative incidence rates of metachronous H&N SCCs at 3, 5, and 7 years were 5.3%, 9.7%, and 17.2%, respectively. These lesions were frequently located at pyriform sinus or in the posterior wall of the pharynx (70%, 37/53 lesions). Most of the lesions were detected at an early stage, though 4 lesions were associated with lymph node metastasis when their primary sites were detected (1 postcricoid area, 2 posterior wall of hypopharynx, and 1 lateral wall of oropharynx).

Conclusions: Patients with esophageal SCC should undergo careful inspection of the pyriform sinus and posterior wall of the pharynx for detection of H&N SCCs. Methods to open the hypopharyngeal space, such as the Valsalva maneuver, should be included in the surveillance program.
In this study, multiple H&N cancers detected after endoscopic resection were classified as metachronous. The incidences and characteristics of metachronous H&N cancers were obtained from electronic medical records. All the lesions were histologically confirmed as SCC according to World Health Organization (WHO) classification. Even when the abnormalities were confined to the lower half of the squamous epithelium, even when the abnormalities were confined to the lower half of the squamous epithelium, the lesion was diagnosed as endoscopically suspected superficial SCC [14], and biopsy samples were taken.

Follow up
Patients were followed up at our hospital or by the referring physicians after treatment. In this study, we only analyzed second primary H&N cancers in patients who were followed up for more than 6 months in our hospital, to ensure the quality of endoscopic examination. Surveillance of H&N cancers was conducted by upper gastrointestinal endoscopy and pharyngolaryngoscopy. Upper gastrointestinal endoscopy was generally conducted by gastroenterologists at 2 months after endoscopic resection, and annually thereafter. Most endoscopic examinations were carried out using a magnifying endoscope with narrow-band imaging (NBI) (GIF-Q240Z or GIF-H260Z; Olympus Optical Co Ltd, Tokyo, Japan) fitted with a soft black hood attachment (MB-162 for GIF-Q240Z, or MB-46 for GIF-H260Z; Olympus) on its top. Pharyngolaryngoscopy by otolaryngologist was conducted annually or as dictated by symptoms such as hoarseness or discomfort in swallowing. During endoscopic examination, we observed the oropharynx, hypopharynx, and oral cavity. If a well-demarcated brownish area and microvascular irregularities were observed with NBI, the lesion was diagnosed as endoscopically suspected superficial SCC [14], and biopsy samples were taken.

General treatment principles of H&N cancer
All detected H&N cancers were treated at our hospital based on a strategy determined by otolaryngologists and gastroenterologists. Lesions that fulfilled the following criteria were treated by minimally invasive treatment, such as transoral surgical mucosectomy or endoscopic resection: (1) cancers limited to the epithelium or invading into the surface part of the subepithelial layer; (2) cancers with no spread into the pharyngeal space bilaterally; and (3) no lymph node or distant metastasis visible by computed tomography. Because lesions in the oral cavity and superior wall of the oropharynx can be accessed easily by a surgical device, transoral surgical mucosectomy was carried out by otolaryngologists. However, if a transoral direct approach was difficult, endoscopic resection was performed by gastrointestinal endoscopists. If the detected lesion did not meet the indication criteria for minimally invasive treatment as mentioned above, radical surgery, radiotherapy, or chemoradiotherapy was considered.

Statistical analysis
The cumulative incidence rates of metachronous H&N cancers were plotted using the Kaplan-Meier method. The observation period was measured from the date of endoscopic resection to the date of detection of metachronous multiple cancers, or the latest endoscopic examination in patients in whom multiple cancers were not found. Categorical variables were compared using Yates’χ² tests. For all analyses, a two-sided P value < 0.05 was considered statistically significant. Statistical analyses were performed using JMP version 10.0 (SAS Institute, Cary, NC, USA).

Results
The characteristics of the 439 patients and the esophageal lesions are listed in Table 1. For patients with synchronous multiple esophageal SCCs, data for the deepest or largest lesion are shown.

Table 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with esophageal cancer</td>
<td>818</td>
</tr>
<tr>
<td>Excluded</td>
<td></td>
</tr>
<tr>
<td>Prior radiotherapy, chemotherapy, or surgery for esophageal cancer (n = 72)</td>
<td></td>
</tr>
<tr>
<td>Prior diagnosis or treatment of head and neck cancer (n = 145)</td>
<td></td>
</tr>
<tr>
<td>Other incurable cancer (n = 1)</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma (n = 12)</td>
<td></td>
</tr>
<tr>
<td>Neuroendocrine tumor (n = 1)</td>
<td></td>
</tr>
<tr>
<td>No neoplasm (n = 33)</td>
<td></td>
</tr>
<tr>
<td>Not followed up in our hospital (n = 115)</td>
<td></td>
</tr>
</tbody>
</table>

Included in the analysis (n = 439)

Flowchart of patients.

Fig. 1 Flowchart of patients.

Patients with esophageal cancer treated by endoscopic resection between January 2006 to December 2013 (n = 818)

- Prior radiotherapy, chemotherapy or surgery for esophageal cancer (n = 72)
- Prior diagnosis or treatment of head and neck cancer (n = 145)
- Other incurable cancer (n = 1)
- Adenocarcinoma (n = 12)
- Neuroendocrine tumor (n = 1)
- No neoplasm (n = 33)
- Not followed up in our hospital (n = 115)

The characteristics of the 439 patients and the esophageal lesions are listed in Table 1. For patients with synchronous multiple esophageal SCCs, data for the deepest or largest lesion are shown. The patients included 370 men and 69 women, with a median age of 68 years (range 41–83). Eighteen patients had submucosal cancer with lymphovascular involvement, 42 had submucosal cancer without lymphovascular involvement, and 23 had mucosal cancer with lymphovascular involvement. Of these 83 patients, additional treatment was performed in 71 patients (63 chemoradiotherapy, 7 surgery, and 1 chemotherapy) to reduce the risk of lymph node metastasis. The remaining 12 patients did not receive the additional treatment because of patient refusal in 11 cases and liver cirrhosis in 1 case.

Among all the patients, 98% (428/439) received follow-up examinations at 1 year, 79% (346/439) at 2 years, 60% (264/439) at 3 years, 44% (191/439) at 4 years, and 28% (123/439) at 5 years. A total of 53 metachronous H&N cancers developed in 40 patients after median follow-up of 46 months (range 9–109), with cumulative incidence rates of metachronous H&N cancers at 3, 5, and 7 years of 5.3%, 9.7%, and 17.2%, respectively (Fig. 2). The characteristics of the metachronous H&N cancers are listed in Table 2. Thirty-five lesions were located in the hypopharynx, 9 in the oropharynx, 4 in the oral cavity, and 5 in the larynx. Four lesions were detected by otolaryngologists (1 lateral wall of oropharynx, 2 oral floor, and 1 glottis), and all of the remaining lesions were detected by gastroenterologists. Among all the sub-sites in the H&N region, 70% of lesions were located at the pyriform sinus (47%, 25/53) or posterior wall of the pharynx (23%, 12/53). The median size of the detected lesions was 17 mm (range 2–45 mm). Minimally invasive treatment such as endoscopic resection or transoral surgical mucosectomy was conducted for 39 of the 53 lesions (74%). Table 3 shows the T and N
Discussion

In this study, we demonstrated a cumulative 5-year incidence rate of 9.7% for metachronous H&N SCC in patients with esophageal SCC. The pyriform sinus and posterior wall of the pharynx were the most common sites for the development of metachronous SCCs. Most of the lesions were detected at an early stage and were completely removed by minimally invasive treatment, such as transoral surgical mucosectomy or endoscopic resection. However, some lesions in the postcricoid area and posterior wall of the hypopharynx were initially diagnosed at an advanced stage.

In Japan, the age-specific annual incidence rate for oral and pharyngeal cancer in 65- to 69-year-olds was 30.6 per 100,000 in 2008 [15]. Compared with the general population, our study demonstrated that patients with esophageal cancer were at extremely high risk of developing H&N cancers, with an incidence of approximately 2000 per 100,000 patients. We also previously reported that metachronous esophageal cancer frequently developed in patients who had undergone endoscopic resection for esophageal cancer (cumulative incidence rate at 5 years of 20.6%) [16]. These studies demonstrate that the entire epithelial surface of the upper digestive tract is at increased risk of cancer in
patients with esophageal cancer, thus supporting the field cancerization theory.

According to the H&N cancer registry in Japan, a total of 3899 H&N cancers were newly diagnosed in 2012, 840 of which (22%) were classified as Tis/T1NO, and 249 (6.4%) of which were treated by minimally invasive methods, such as transoral surgical mucosectomy or endoscopic resection [17]. In this study using periodic endoscopic surveillance with NBI, 70% (37/53) of lesions were detected as Tis/T1NO cancers, and 39 of the 53 lesions (74%) were treated by minimally invasive procedures. These results indicate that periodic endoscopic surveillance facilitates the early detection of H&N cancers, and suggest that NBI may also be relevant [18].

Effective surveillance requires an understanding of the detailed features, such as the annual incidence and common sites of H&N cancers. Katada et al. reported the prevalence of superficial H&N cancers in patients with esophageal cancer, but not their annual incidence [10]. Hori et al. investigated the annual incidence of H&N cancers, but the number of lesions was relatively small and their detailed locations were not reported [9]. The H&N cancer registry in Japan shows the detailed locations of the cancers, but most cancers included in the registry are advanced cases [17]. The current study is thus the largest to demonstrate the incidence of superficial H&N cancers in patients with esophageal cancer, with detailed information on the locations and stages of the lesions. Although this study was conducted in patients with esophageal cancer, the findings regarding cancer location might be applied to cancers arising based on the field cancerization theory.

In this study, H&N cancers were frequently located at the pyriform sinus or posterior wall of the pharynx (70%, 37/53 lesions). Because the structure of the H&N region is complex and it is difficult to view the region thoroughly, information on the most common sites of H&N cancers may help effective surveillance. Although we detected most H&N lesions at an early phase, some lesions in the posterioricoid area and posterior wall of the hypopharynx already had lymph node metastasis when their primary sites were discovered. These anatomically adjacent sites in the hypopharynx constitute a closed space, which disturbs us to notice subtle changes in the mucosa during endoscopic observation (Fig. 3). Methods to open this closed space, such as the Valsalva maneuver, would facilitate detection of these lesions, and such methods should thus be included as a part of the routine surveillance program.

Our study was limited by its retrospective, single-center design, and by the large number of patients (115 patients) who were lost to follow up. However, conducting a multicenter study would be difficult given that there is currently no established surveil-

References