Colonic transendoscopic enteral tubing: A novel way of transplanting fecal microbiota

Authors
Zhaoyuan Peng1,2, Jie Xiang1,2, Zhi He1,2, Ting Zhang1,2, Lijuan Xu1,2, Bota Cui1,2, Pan Li1,2, Guangming Huang1,2, Guozhong Ji1,2, Yongzhan Nie3, Kaichun Wu3, Daiming Fan3, Faming Zhang1,2

Institutions
Institutions are listed at the end of article.

Background and study aims: Placement of a tube through the anus into the cecum has not yet been established as a method of administering whole-colonic treatment. The aim of this study was to evaluate the safety, feasibility, and value of transendoscopic enteral tubing (TET) for fecal microbiota transplantation (FMT) through the colon.

Patients and methods: A prospective observational study was performed of FMT using a new colonic TET technique. Under endoscopic guidance, a TET tube was affixed to the cecum with clips. The safety, value, and satisfaction with the FMT by TET were evaluated.

Results: A total of 54 patients underwent TET. The success rate of the TET procedure was 100% (54/54). Duration of the TET procedures was 14.8±5.8 min. During the TET tube retention period, 98.1% (53/54) of patients were satisfied with TET. The retention time for whole-colon delivery of the fecal microbiota suspension was 12.4±2.3 days. In 88.4% (49/54) of cases, no discomfort was reported during injection through the TET tube of the microbiota suspension. No adverse events were seen in patients who required tube extubation after FMT.

Conclusions: Colonic TET is a novel, safe, convenient, and reliable procedure for FMT that results in a high degree of patient satisfaction.

Introduction
Fecal microbiota transplantation (FMT) has gained worldwide attention in recent years [1]. In 2013, it was recommended as the clinical choice in guidelines for treatment of recurrent Clostridium difficile infection (CDI) [2]. In addition, clinical studies have shown that FMT has a therapeutic role in inflammatory bowel diseases, refractory constipation, chronic diarrhea, and metabolic syndrome [3, 4]. Since 2012, our group has been evaluating possible applications for and new methods of applying FMT [5–7]. Previous reports on FMT for delivery of treatment have involved the upper, middle, and lower gut [8–11]. FMT via colonoscopy is a classic approach, but patients have to endure bowel preparation and colonoscopy, especially when they need repeat treatment over a short period of time [12]. A traditional enema delivers solution only within the rectal and sigmoid colon which is way, in our previous studies of Crohn’s disease and ulcerative colitis, why we chose to use FMT for delivery through the mid-gut [6, 7]. However, patients may find it psychologically difficult to accept FMT through the upper and middle digestive tract. Importantly, reflux and aspiration of bacterial liquid may occur and even cause asphyxia [13, 14]. There is currently no technique for placing a tube through the anus into cecum for whole-colon administration of treatment that could be maintained for repeat FMTs or while awaiting fresh fecal microbiota from the lab. Therefore, to solve these problems, we designed a new technique called transendoscopic enteral tubing (TET). As shown in Fig. 1, the TET tube is fixed to the cecum with clips under endoscopic guidance.

Patients and methods
A prospective observational study (NCT02560727) was conducted at the Second Affiliated Hospital of Nanjing Medical University from October 2014 to September 2015. All patients met the inclusion criteria, which were age 10 to 70 years, safety for the pilot study, suitability for endoscopy, and consent to undergo FMT and TET for their diseases and conditions. Patients were excluded if they had severe bowel lesions.
with stenosis, fistula, or the risk of perforation; complex perianal lesions or serious lesions in the ileocecal junction or ascending colon; and no proper site for titanium clip fixation. Informed consent was obtained from all adult subjects or parents in pediatric cases. The study was approved by the Institutional Review Board of the Second Affiliated Hospital of Nanjing Medical University.

Preparation, procedures and assessment of TET

Regular colonoscopy was performed under intravenous anesthesia. After examination and evaluation of the whole colon, the TET tube (FMT medical, Nanjing, China) was inserted into the ileocecal junction through the endoscopy channel (Fig. 2). The colonoscope was removed from the colon while the TET tube was maintained at the ileocecal junction. Then the colonoscope was inserted into the ileocecum again. The line circle on the TET tube was affixed to the intestinal wall using titanium clips under direct vision (generally two titanium clips at the first station and one to two clips at the second and/or third station as necessary) (Fig. 3 and Fig. 4). Next the colonoscope was withdrawn carefully and slowly. The distal tube was affixed to the skin of the buttocks (preferably on the left side) with medical adhesive plaster. A valve was connected to the terminal TET tube. The procedure time and all related adverse events (AEs) were recorded. According to the concept shown in Fig. 1, the patient was required to be in the right-lateral position and then 200 mL of suspension was injected through the TET tube. The 200-mL suspension was a mixture of 150 mL saline and 50 cm³ centrifuged microbiota that was purified following our lab protocol and using the automatic system GenFMTer (FMT medical, Nanjing) [6, 7]. The duration of the injection was recorded and intended to be more than 1 minute so as to avoid the abdominal discomfort that would be associated with a quicker procedure. After FMT, patients were required to remain in the right-lateral position for 30 minutes. Retention of the microbiota suspension for over 1 hour indicated successful delivery of the microbiota through colonic TET. In some cases, FMT was repeated during subsequent days to ensure infusion of the microbiota to the whole colon. Reports from patients of discomfort during FMT were recorded and all of them agreed to participate in the post-treatment survey on satisfaction with TET and FMT.

Results

As shown in Table 1, 54 patients were included in this prospective study: 32 males and 22 females aged 10 to 70 years (mean ± SD, 34.5 ± 10.4). Of the patients, 23 cases had ulcerative colitis, 16 had Crohn’s disease, five had unexplained chronic diarrhea, five had constipation, three had small intestinal bacterial overgrowth, and two had irritable bowel syndrome. TET was successful in all 54 cases (100%). The mean time from advancement of the TET tube through the channel to the end of the tubing was 14.8 minutes. Three clips were used on two fixation stations of the TET tube in 36 cases during our preliminary observational period or in patients who only needed short-term retention of TET tube retaining. In the remaining 15 cases, four clips were used on two fixation stations. No complications such as mild to serious abdominal pain and bleeding stool were observed. During the TET tube retention period, 98.1% of patients (53/54) were satisfied with TET; one patient with ulcerative colitis complained of tolerable
mild anal discomfort; no other patients complained of anal pendan
t expansion.
A total of 200 mL of fecal microbiota suspension was given to each
patient and the mean injection time was 3.2 minutes. In all cases
(100 %), FMT through colonic TET was successful. In 88.4 % of cases
(49/54), patients reported no discomfort during FMT. One patient
(1.9 %) with severe ulcerative colitis complained of abdominal
pain after infusion through TET tube, and the symptoms were al-
leviated with rest. Four patients (7 %) reported tolerable mild ab-
dominal distension. In one case, we encountered difficult with
removal of tube when the tubes fell off or on removal of them.
All clips were observed on the TET tubes after their removal from
the colon.

Discussion

Reports exist of use of FMT to deliver treatment to the upper gut,
mid-gut and lower gut. Oral intake of fecal microbiota capsules is
common through the upper gut [1]. The capsule dissolves in the
small intestine and bacteria are distributed in the gastrointestinal
tract. In mid-gut, the microbiota suspension is injected into
the small intestine below the second duodenal segment under
endoscopic direct vision or via a nasogastric tube, small intestine
stoma or percutaneous endoscopic gastrostomy with jejunal ex-
tension (PEGJ) [15]. Fecal microbiota can be delivered to the lower
gut through colonoscopy, enema, distal ileum stoma, colostomy,
and colonic TET. The advantages and limitations of different
methods of delivering FMT are shown in Table 2.

In this study, TET and FMT were successfully performed in all 54
cases (100 %), and FMT retention time was longer than 1 hour.
This TET technique and the novel TET accessory devices used de-
monstrate the feasibility and significance of colonic administra-
tion. No serious AEs were observed during the TET procedure, in-
fusion of FMT through the TET tube, the period during which the
TET tube was left in place, or removal of the device. During the
FMT procedure, 90.7 % (49/54) of patients reported no discom-
fort. The mean retention time for the microbiota suspension was
enough to meet the requirement for FMT according to our proto-
coll. For patients who required repeat FMT and combined colonic
administration of mesalazine, it was a convenient and economic
way to use the colonic TET tube. Importantly, this method may be
less psychologically challenging for patients than delivery of FMT
via the upper and middle digestive tract.

Table 2 Current ways of delivering FMT

<table>
<thead>
<tr>
<th>Method of delivery</th>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper-gut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral capsules[9]</td>
<td>Convenience for patients; easy to deliver</td>
<td>Efficacy affected by cryopreservation state [3]; bacteria possibly affected by bile salts [5] and cryopreservation state; potential risk of SIBO</td>
</tr>
<tr>
<td>Mid-gut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endoscopic channel</td>
<td>Easy to deliver; easy to maintain</td>
<td>Only used during endoscopy; reflux and aspiration [4]; bacteria possibly affected by bile salts [5] and cryopreservation; potential risk of SIBO; not convenient to repeat</td>
</tr>
<tr>
<td>Nasojejunal tube [5]</td>
<td>Easy to deliver; easy to maintain</td>
<td>Only used in patients with nasojejunal tube; bacteria possibly affected by bile salts; potential risk of SIBO</td>
</tr>
<tr>
<td>PEGJ tube</td>
<td>Easy to deliver; easy to maintain</td>
<td>Only used in few patients with PEGJ tube; bacteria possibly affected by bile salts; potential risk of SIBO</td>
</tr>
<tr>
<td>Lower-gut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endoscopic channel</td>
<td>Easy to deliver</td>
<td>Only used during colonoscopy; difficult to hold the infused suspension in colon; not convenient to repeat</td>
</tr>
<tr>
<td>Traditional enema</td>
<td>Easy to deliver; low cost</td>
<td>Only cover rectosigmoid colon; limited infused volume; not suitable for patients having difficulty to hold the infused suspension in rectum</td>
</tr>
<tr>
<td>Stoma in ileocolon</td>
<td>Convenient to repeat FMT; easy to deliver; avoiding bacteria affected by bile salts; easy to maintain</td>
<td>Only used in few patients with PEC [15] tube or surgical double cavity stoma formation in ileocolon</td>
</tr>
<tr>
<td>Colonic TET tube</td>
<td>Convenient to repeat FMT; easy to deliver; avoiding bacteria affected by bile salts; easy to maintain</td>
<td>TET tube must be placed under colonoscopy</td>
</tr>
</tbody>
</table>

FMT: fecal microbiota transplantation; PEGJ: percutaneous endoscopic gastrostomy with jejunal extension; SIBO: small intestinal bacterial overgrowth; TET: transendoscopic enteral tubing.
In 19 patients, the TET tubes were removed after a single FMT or colonic administration. Of them, 4 with IBD required removal of the TET tube after FMT and 1-week administration of mesalazine (7 enemas in a single package of Salofalk) because there was no need to leave the TET tube in place. According to our lab protocol and clinical flow [6,7], for consideration of improving possible clinical efficacy, the time from defecation of stool to infusion of microbiota was required to be no more than 1 hour. Therefore, 15 patients agreed to the use of TET while waiting for fresh microbiota from the lab and because they preferred psychologically delivery through the lower gut, and their TET tubes were removed after FMT.

It should be emphasized that the patients' daily lives were not affected by TET, and in 98.1% of cases (53/54), they were satisfied with FMT through TET. For patients with ulcerative colitis that involved the entire colon or Crohn’s disease, TET should be a wonderful choice for frequently delivering medication into the whole colon. In the current study, all 23 patients with ulcerative colitis and 16 patients with Crohn’s disease were administered a mesalazine enema through the TET tube. Of them, six patients were discharged with the tube and they were able to conveniently infuse medication by themselves at home.

The novel concept of TET may be promising for intestinal interventional therapy. Besides this pilot study on colonic study for whole-colon administration through a colonic TET tube, a study on the similar concept of TET used for interventional therapy by duodenal or jejunal TET under gastroscopy is ongoing in our center.

This study does, however, have some limitations. The sample size of this pilot study was small, but a larger prospective study based on these preliminary results is ongoing. This study did not evaluate clinical responses to whole-colon administration compared with other traditional treatments; that will be part of our future studies. A cost-efficacy analysis is necessary and the results may vary from country to country depending on policies for medical charges. Patients who require only a single FMT (e.g. CDI) may not need to generally may not need to undergo colonic TET if use of fresh fecal microbiota is not a consideration and that is why there were no CDI patients in this study.

In conclusion, this study is the first report of colonic TET as a convenient and safe way of delivering FMT. The results highlight the significance of colonic TET as a promising technique for single and repeat whole-colon administration of medication.

Competing interests: Dr. Zhang invented the concept of transendoscopic enteral tubing and devices related to it.

Institutions
1 Medical Center for Digestive Diseases, the Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu Province, China.
2 Key Lab of Holistic Integrative Enteroology, Nanjing Medical University, 121 Jiangjiayu, Nanjing 210011, Jiangsu Province, China.
3 State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, Xi’an 710032, China.

Acknowledgements
This research was supported by public donated Intestine Initiative Foundation, Clinical Science and Technology Foundation of Jiangsu Province (BL2014097), and National Gastroenterology Research Project (2015BAI13B07).

References