Comparison of Modern 3D and 2D MR Imaging Sequences of the Wrist at 3 Tesla

Vergleich moderner 3D- und 2D-MR-Sequenzen zur Bildgebung der Hand bei 3 Tesla

Authors
C. Rehnitz¹, B. Klaan¹, F. von Stillfried², E. Amarteifio¹, I. Burkholder³, H. U. Kauczor¹, M. A. Weber¹

Affiliations
¹ Diagnostic and Interventional Radiology, University of Heidelberg, Germany
² Department for Orthopedics, Traumatology and Paraplegiology, University of Heidelberg, Germany
³ Department of Nursing and Health, University of Applied Sciences of the Saarland, Saarbruecken, Germany

Zusammenfassung
Vergleich der Bildqualität moderner 3D- und 2D-Sequenzen zur dedizierten MRT des Handge- lenkes bei 3 Tesla (T).

Ergebnisse: Die Bildqualität aller getesteten Sequenzen war der 3D-PDfs-SPACE überlegen (p < 0,01). Bezüglich des Knorpels erreichte die 3D-TrueFISP die höchste kombinierte Bewertung (Mittelwert: 3,4), wobei die Unterschiede zur 2D-PDfs in beiden Gruppen und der 3D-PDfs-SPACE in der Probanden-Gruppe signifikant waren (p < 0,05). Die 3D-MEDIC war in 7 von 8 Paarvergleichen bezüglich der Ligamente und des TFCC (p < 0,05) überlegen. Die 2D-PDfs lieferte konstant hohe Bewertungen. Die gemittelten SNR/CNR-Werte für 2D-PDfs, 3D-PDfs-SPACE, 3D-TrueFISP und 3D-MEDIC waren 68/65, 32/27, 45/47 und 57/45. Bezüglich der anatomischen Einzelstrukturen war die 2D-PDfs in den meisten Einzelvergleichen überlegen (p < 0,05), unter den 3D-Sequenzen die 3D-MEDIC (p < 0,05).

Abstract
Purpose: To compare the image quality of modern 3D and 2D sequences for dedicated wrist imaging at 3 Tesla (T) MRI.

Materials and Methods: At 3 T MRI, 18 patients (mean age: 36.2 years) with wrist pain and 16 healthy volunteers (mean age: 26.4 years) were examined using 2D proton density-weighted fat-saturated (PDfs), isotropic 3D TrueFISP, 3D MEDIC, and 3D PDfs SPACE sequences. Image quality was rated on a five-point scale (0–4) including overall image quality (OIQ), visibility of important structures (cartilage, ligaments, TFCC) and degree of artifacts. Signal-to-noise ratios (SNR) and contrast-to-noise ratios (CNR) of cartilage/bone/muscle/fluid as well as the mean overall SNR/CNR were calculated using region-of-interest analysis. ANOVA, paired t-, and Wilcoxon-signed-rank tests were applied.

Results: The image quality of all tested sequences was superior to 3D PDfs SPACE (p < 0.01). 3D TrueFISP had the highest combined cartilage score (mean: 3.4) and performed better in cartilage comparisons against 3D PDfs SPACE in both groups and 2D PDfs in volunteers (p < 0.05). 3D MEDIC performed better in 7 of 8 comparisons (p < 0.05) regarding ligaments and TFCC. 2D PDfs provided constantly high scores. The mean overall SNR/CNR for 2D PDfs, 3D PDfs SPACE, 3D TrueFISP, and 3D MEDIC were 68/65, 32/27, 45/47, and 57/45, respectively. 2D PDfs performed best in most SNR/CNR comparisons (p < 0.05) and 3D MEDIC performed best within the 3D sequences (p < 0.05).

Conclusion: Except 3D PDfs SPACE, all tested 3D and 2D sequences provided high image quality. 3D TrueFISP was best for cartilage imaging, 3D MEDIC for ligaments and TFCC and 2D PDfs for general wrist imaging.

Key points:
- 3D TrueFISP is recommended for cartilage imaging of the wrist at 3 T.
Introduction

MR imaging of the wrist is challenging, because of its complex anatomy and small structures including tiny ligaments with oblique courses as well as thin cartilage layers. However, ligament tears, damage to the cartilage, injuries of the triangular fibrocartilage complex (TFCC) or lesions of tendons are frequent clinical questions in patients with general wrist pain, beginning osteoarthritis or after trauma [1]. The 2D proton density fat-saturated (PDfs) turbo spin echo (TSE) sequence is a standard sequence in general musculoskeletal imaging and has also been advocated for the wrist [1, 2]. Modern 3D sequences that have been used in other joints to evaluate cartilage, ligaments, and tendons include 3D TSE-based PDfs SPACE (sampling perfection with application-optimized contrast using different flip-angle evolutions), 3D gradient-echo (GRE) based sequences MEDIC (multiple echo data image combination) and TrueFISP (True Fast Imaging with Steady-state Precession). However, these sequences have not been systematically applied at the wrist. Also, there are conflicting results regarding the performance of 3D versus 2D MR imaging in other joints [3–6] and at the wrist at 3T [2, 7, 8]. Moreover, many studies on the assessment of the diagnostic performance of these sequences only studied healthy volunteers [9, 10] including all reports on 3D/2D imaging of the wrist at 3T [2, 7, 8]. The purpose of this study was to evaluate the image quality measures of three modern high-resolution 3D sequences and high-resolution 2D PDfs sequences at the wrist in patients with wrist pain and healthy volunteers at 3T.

Materials and Methods

Subjects
The study was approved by the institutional review board and conducted according to the declaration of Helsinki in the present form. Informed consent was obtained from all patients and volunteers after the nature of the examination had been fully explained. A group of 34 individuals with 3T wrist imaging was included in this study from March 2012 through October 2012. It consisted of 18 consecutive patients (10 women and 8 men; mean age: 36.2 years; age range: 22–55 years) that presented at the hand surgery department of the orthopedic clinic of our institution for the evaluation of acute or chronic wrist pain and 16 healthy volunteers (10 women and 6 men; mean age: 26.4 years; age range: 22–31 years). The volunteers showed a normal physical examination of the wrist performed by an orthopedic hand surgeon and no history of wrist trauma, wrist surgery, or any clinical complaints regarding their wrists. Wrist pain was assessed by physical examination by a senior hand surgeon and included patients with posttraumatic pain (n = 11), ulnar impaction syndrome (n = 2), and pain without clearly defined clinical pathology (n = 5). 5 of the patients had previous surgery at the wrist. Patients who were referred for tumor imaging with the need of specialized imaging protocols as well as patients with acute septic conditions were not included. Further exclusion criteria were general contraindications to MR imaging (for example, pacemakers, none of the individuals), patients who could not be imaged with the dedicated wrist coil for several reasons (for example, not fitting in the coil, n = 4), or presence of metallic implants at the wrist (n = 1). Therefore, of the original 23 patients, only 18 with wrist pain were included. In the group of volunteers the left wrist was examined, while in the group of patients the clinically affected wrist was imaged (6 right and 12 left wrists).

MR Imaging Protocol
MRI was performed on a 70-cm open-bore 3T whole-body scanner (MAGNETOM Verio, Siemens Healthcare, Erlangen, Germany), equipped with an 18-channel total imaging matrix (Tim [102x18] configuration) in combination with a dedicated transmit-receive eight-channel wrist coil (Siemens Healthcare, Erlangen, Germany). The examination protocol was adapted according to previous recommendations [1]. The subjects were placed in a prone position with the elbow extended overhead and the wrist coil placed in the isocenter. The same imaging protocol was used for all volunteers and patients and included the standard high-resolution two-dimensional PD-weighted fat-saturated TSE sequence (2D PDfs) and the three isotropic three-dimensional sequences: 3D PDfs SPACE, 3D MEDIC, and 3D TrueFISP. The technical parameters for all sequences are summarized in Table 1. During initial testing, the 3D TrueFISP exceeded SAR limits with the imaging parameters provided by the manufacturer, necessitating slight modifications of the flip angle, echo time (TE) and repetition time (TR). The other sequences were used as originally provided by the manufacturer. All sequences were acquired in coronal orientation without secondary reconstruction.

Data Acquisition
The image analysis was performed on our picture archiving and communication system (Centricity PACS, version 4.0, GE Health-
care Integrated IT Solutions, Barrington, IL). The evaluation was performed in consensus by 2 musculoskeletal radiologists with 10 and 1 year of experience in this field, respectively.

Subjective image quality assessment: qualitative analysis

The image quality of all sequences was assessed and subjectively rated using a five-point scale and included 5 different items:

1. Cartilage
2. Triangular fibro-cartilage complex (TFCC)
3. Intercarpal ligaments
4. Artifacts
5. Overall image quality (OIQ)

In general, a score of 0 meant the sequence was not evaluable; 1 indicated poor image quality; 2 moderate image quality; 3 high image quality, and 4: excellent or outstanding image quality.

The grading for the anatomical structures was defined as the calculated average of different separately graded substructures: for cartilage, it represented the average of radio-scapohoidal and intercarpal cartilage, and for TFCC the average of the gradings for the central disc, ulnar attachments, and meniscal homologue. For intercarpal ligaments, the average grading of the scapholunate and lunotriquetral ligaments was calculated. For the anatomical structures, a score of 0 indicated that a structure was not visible; a score of 1 indicated that a structure was visible, but could not be analyzed; a score of 2 indicated that a structure was visible and partially assessable, i.e., not all aspects of the structure could be analyzed (for example, small lesion or partial tears might not be visible); a score of 3 indicated that a structure was visible and completely analyzable; with this score, the corresponding sequence should enable detection of all major pathologies; a score of 4 indicated that a structure was excellent-ly visible, sharply outlined, and with a homogeneous signal. The sequence with outstanding image quality score may allow for detection of subtle pathologic changes within the structure.

The scoring of artifacts was based on the severity of artifacts (for instance, banding, chemical shift, movement or susceptibility artifacts) in combination with the resulting impairment of the diagnostic interpretability of the key structures including cartilage, the central disc of the TFCC, and intercarpal ligaments. A score of 0 meant the sequence was not evaluable due to artifacts; a score of 1 indicated severe diagnostic impairment; a score of 2 indicated moderate diagnostic impairment; a score of 3 indicated mild diagnostic impairment, and a score of 4 indicated no diagnostic impairment.

The overall image quality (OIQ) was graded based on the personal overall impression of the sequence regarding important features of image quality including signal intensity, visible noise, uniformity, sharpness, and contrast between different structures/tissues. Therefore, a grade four (excellent) was only given if the sequence could sharply visualize all tissues and relevant anatomic structures (for example, cartilage or TFCC) in a manner that would potentially allow for the detection of subtle pathologic changes.

Quantitative Analysis: SNR and CNR

Additionally, the SNR (signal-to-noise ratio) and CNR (contrast-to-noise ratio) of all sequences were determined by signal intensity measurements in consistent locations for each subject. Both observers were blinded concerning the identity of the subject and the sequence. To gain the specific SNR and CNR of different tissues, manually defined ROIs were placed within the following anatomical structures: intercarpal cartilage, bone, muscle, fluid, TFCC, and tendon. The signal intensity of cartilage ($S_{\text{cartilage}}$) was measured in the distal carpal row between the capitae and scaphoid as well as the lunate bone, S_{bone} within bone marrow of the capitae or hamate, S_{muscle} within the thenar muscles, S_{fluid} within the radio-scapohoidal joint cavity or between the proximal and distal carpal row, S_{TFCC} within the central disc of the TFCC, and S_{tendon} within the extensor tendons close to the carpal tunnel. Noise was defined and measured as the standard deviation of signal intensity within the air in an artifact-free area outside of the extremity [10]. The mean sizes of the ROIs for the different anatomical structures were 51.0 mm² for noise (range: 49 – 53), 14.1 mm² for cartilage (range: 6 – 24), 30.9 mm² for bone (range: 30 – 34), 30.8 mm² for muscle (range: 29 – 33), 2.6 mm² for fluid (range: 1 – 7), 7.8 mm² for TFCC (range: 2 – 15), and 21.8 mm² for tendon (range: 19 – 24).

SNR was calculated according to [10] as

$$SNR_{\text{tissue}} = \frac{S_{\text{tissue}}}{1.5 \cdot \text{noise}}$$

CNR between two tissues was defined according to [10] as

$$CNR_{\text{tissue1-tissue2}} = \frac{S_{\text{tissue1}} - S_{\text{tissue2}}}{1.5 \cdot \text{noise}}$$

Table 1 MR imaging protocol.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>TR (ms)</th>
<th>TE (ms)</th>
<th>flip angle (degree)</th>
<th>matrix</th>
<th>voxel size (mm)</th>
<th>field of view (mm)</th>
<th>slice thickness (mm)</th>
<th>spacing (mm)</th>
<th>bandwidth (Hz/pixel)</th>
<th>echo train lengths</th>
<th>iPAT</th>
<th>PAT Factor</th>
<th>acquisition time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 D PD fs</td>
<td>2820</td>
<td>1100</td>
<td>26</td>
<td>156</td>
<td>307 * 384</td>
<td>105 * 140</td>
<td>2</td>
<td>2.2</td>
<td>171</td>
<td>7</td>
<td>GRAPPA</td>
<td>2</td>
<td>2:40</td>
</tr>
<tr>
<td>3 D PD fsSPACE</td>
<td>1100</td>
<td>40</td>
<td>26</td>
<td>120</td>
<td>240 * 320</td>
<td>105 * 140</td>
<td>0.4</td>
<td>36</td>
<td>326</td>
<td>3</td>
<td>GRAPPA</td>
<td>2</td>
<td>4:32</td>
</tr>
<tr>
<td>3 D MEDIC</td>
<td>40</td>
<td>22</td>
<td>22</td>
<td>10</td>
<td>320 * 240</td>
<td>105 * 140</td>
<td>0.4</td>
<td>1</td>
<td>158</td>
<td>1</td>
<td>GRAPPA</td>
<td>2</td>
<td>3:36</td>
</tr>
<tr>
<td>3 D TrueFISP</td>
<td>9.53</td>
<td>4.77</td>
<td>18</td>
<td>18</td>
<td>288 * 384</td>
<td>105 * 140</td>
<td>0.5</td>
<td>1</td>
<td>318</td>
<td>1</td>
<td>GRAPPA</td>
<td>2</td>
<td>4:32</td>
</tr>
</tbody>
</table>

| TR = repetition time; TE = echo time; iPAT = integrated parallel acquisition techniques; GRAPPA: generalized autocalibrating partially parallel acquisition; PD fs: proton density-weighted fat saturated; SPACE: sampling perfection with application-optimized contrast using different flip angle evolutions; MEDIC: multiple echo data image combination; TrueFISP: true fast imaging with steady-state precession. |
CNR was calculated for various comparisons of assessed tissues, specifically for cartilage-bone, muscle-bone, fluid-cartilage, and muscle-tendon. Differences between each sequence regarding SNR/CNR in a specific tissue were assessed using a two-pair comparison of the sequences for all tissues, for instance 2D PDfs versus 3D PDfs SPACE regarding the SNR of cartilage. The SNR and the CNR comparisons were both performed divided for the groups of volunteers and patients. To increase overall comparability between the sequences, additionally, the mean overall SNR and CNR in the entire study population (volunteers and patients) were calculated as mean values and standard deviation of all tissues together (see also the statistics section).

Statistical Analysis

All statistical analyses were processed using SAS for Windows version 9.3 (SAS Institute Inc., Cary, NC) and R version 2.15.1 (www.cran.r-project.org). Quantitative and qualitative measurements were analyzed separately for the groups of volunteers and patients. Additionally, a combined analysis was performed for the qualitative items. The homogeneity of the groups regarding sex and age were tested using the Chi-square test and exact Wilcoxon rank-sum test, respectively. Image quality grading was assessed using the Friedman test for paired samples to analyze whether significant differences between the four sequences existed in a certain structure or category. Friedman’s test is a non-parametrical alternative to ANOVA with repeated measures and is used to test for differences between more than two groups. Only if significant differences were found, post-hoc two-group comparisons between all sequences were performed using the Wilcoxon signed-rank test. The Bonferroni-Holm method was used to adjust p-values of the Wilcoxon-signed-rank test regarding multiple comparisons. Differences in SNR and CNR between various sequences were assessed using a one-way ANOVA analysis with repeated measurements. F-tests were used to analyze overall differences between all sequences. Only if significant overall differences were found in this global test, post-hoc analysis using paired t-tests was performed comparing all sequences with each other in groups of two applying the Bonferroni-Holm method to adjust p-values of paired t-tests regarding multiple comparisons. The mean overall SNR and CNR of the whole study population (volunteers and patients) was calculated as mean values and standard deviation of all tissues, i.e., mean overall SNR/CNR of 2D PDfs, 3D PDfs SPACE, 3D MEDIC, and 3D TrueFISP. A p-value of less than 0.05 was considered significant.

Results

Subjective image quality analyses

2D PDfs, 3D TrueFISP, and 3D MEDIC showed high to excellent overall image quality levels (mostly equaling grade 3–4), while 3D PDfs SPACE provided the lowest (Fig. 1). The best image quality was found for 3D TrueFISP in volunteers (mean: 3.6), mainly due to its high resolution, clarity, and delineation of structures, high signal of cartilage and fluid and homogeneous dark signal of bone marrow (Fig. 2). Image quality measures were lower in patients when compared to healthy volunteers and most pronounced in 3D TrueFISP (Fig. 1). The decrease in image quality was mainly attributed to motion in the longer 3D sequences, banding, and susceptibility artifacts. However, the banding and susceptibility artifacts usually limited the interpretability only regionally with good or excellent visibility in other regions. Fig. 3 highlights the imaging performance in a patient with lunate cartilage damage due to ulna impaction with a small cartilage defect best depicted in TrueFISP. Also, regionally decreased interpretability due to artifacts at the radioscaphoid joint is illustrated, which was pronounced in the GRE sequences TrueFISP and MEDIC compared to the TSE-based other sequences. However, noisy image impression was present in 3D PDfs SPACE. For analyses of specific tissues, artifacts, and overall image quality of the different sequences, 60 two-pair comparisons between the sequences in volunteers and patients were performed (Table 2). Fig. 4 compares combined (all individuals) image quality scores in these disciplines. 2D PDfs won most of the two-pair comparisons (p < 0.01–p < 0.05). In particular, 2D PDfs was superior in all comparisons (p < 0.05) against both 3D PDfs SPACE and 3D TrueFISP regarding ligaments and TFCC. Besides good results in all comparisons, 3D MEDIC was especially beneficial in ligaments and TFCC when compared to the other 3D sequences, winning 7 out of 8 comparisons (p < 0.05) with one non-significant result. There was no significant difference between MEDIC and 2D PDfs in all image quality scores. However, the readers found an additional or complementary advantage of MEDIC, because of the isotropic resolution with thin continuous slices that facilitated analysis of the whole course of ligaments or TFCC attachments. MEDIC showed minor focal low intensity artifacts when depicting cartilage (Fig. 3). Besides the highest image quality score in volunteers, 3D TrueFISP also had the highest combined cartilage score (mean: 3.4 ± 0.7) and won the two-pair cartilage comparisons against 3D PDfs SPACE (p < 0.05) in both groups and 2D PDfs in volunteers (p < 0.05). The main advantages of 3D TrueFISP were the bright cartilage signal with excellent contrast to surrounding structures, especially to the joint fluid and the subchondral bone, enabling the readers to better depict subtle cartilage lesions (Fig. 3). The only two-pair comparison that 3D PDfs SPACE won was the degree of artifacts in patients when compared to 3D TrueFISP, which also lead to a minor decrease of image quality in patients when compared to volunteers. Specifically, no band-
ing or chemical shift artifacts were present. However, image quality measures were lowest. The main subjective disadvantages of 3 D PDfs SPACE were the visible noise and the blurring of the structures (●▶ Fig. 2, 3) as well as motion artifacts in this sequence with the longest acquisition time of 6:11 min.

Quantitative analyses

●▶ Fig. 5 shows the overall SNR and CNR for each sequence. 2 D PDfs showed the highest SNR and CNR values. Within the 3 D sequences, 3 D MEDIC had the highest SNR and similar overall CNR values compared to 3 D TrueFISP, while 3 D PDfs SPACE showed the lowest SNR/CNR. For detailed analyses of the specific tissues, 120 two-pair comparisons between the sequences have been performed regarding SNR and CNR. ●▶ Table 2 provides the winners of these benchmark challenges and the corresponding p-values of those comparisons. 2 D PDfs won most of the two-pair comparisons (p < 0.01-p < 0.05). 3 D MEDIC turned out to be the best 3 D sequence and won the majority of comparisons in the different tissues including ligaments, tendons, bone, and TFCC (p <0.01-p < 0.05). One exception was the CNR of cartilage/fluid and the SNR of fluid, where 3 D TrueFISP was the best 3 D sequence (●▶ Fig. 6).

Discussion

In our study on wrist imaging at 3 T, the tested 2 D/3 D sequences turned out to be advantageous in different situations and specific tissues. For instance, 3 D TrueFISP may be recommended for cartilage imaging, because it provided the highest cartilage image quality of all sequences, reaching significant levels versus 3 D PDfs SPACE (all individuals) and 2 D PDfs (volunteers). In most volunteers, the image quality of cartilage was by far better than all other sequences with excellent contrast to the very bright fluid and the dark subchondral bone. In several patients with cartilage defects, this damage was best visualized in 3 D TrueFISP and contributed to the high cartilage score. An additional benefit of 3 D TrueFISP was the highest CNR of cartilage/fluid and SNR of fluid of all 3 D sequences. This in combination with its high resolution and isotropic voxels may facilitate the detection of cartilage defects, especially when regional cartilage integrity is crucial to decide between limited surgical procedures and total wrist arthrodesis [12, 13]. TrueFISP has also proved advantages in cartilage imaging in other joints [14, 15]. In a study of the knee joint [14], TrueFISP provided excellent image quality, reaching 3.78 ±0.5 from a maximum of 4 points in 37 patients after matrix-associated autologous chondrocyte transplantation (MACT). Also, TrueFISP was recommended for monitoring osteoarthritis.

Rehnitz C et al. Comparison of Modern... Fortschr Röntgenstr 2016; 188: 753–762
disease progression at the knee, particularly due to the high SNR/CNR values [16, 17]. A regional decrease in image quality because of artifacts, as present in our patient group, was also reported in other studies [11, 14, 18]. Therefore, especially in the postoperative situation when susceptibility is expected, the use of TSE- instead of GRE-based sequences may be beneficial.

3D MEDIC turned out to be the best 3D sequence for ligaments and the TFCC by winning most of the two-pair comparisons. Also, it turned out to be a good compromise for all structures with high overall image quality, high cartilage scores, the highest SNR within the 3D sequences and fewer artifacts compared to TrueFISP. T2*-weighted gradient-echo MEDIC combines up to 6 echoes to form an image with a high receiver bandwidth resulting in an increased SNR and reduced susceptibility [19] together with a short acquisition time [8, 19, 20]. In general, MEDIC has only been rarely used for joint imaging, particularly for wrist imaging. Lenk et al. [8] reported a score of 2 (structure is completely detectable/assessable) in all 10 volunteers regarding the visualization of carpal ligaments and TFCC, combined with a high SNR. Pahwa et al. [20] reported 3D MEDIC at 1.5 T to have a higher sensitivity for the detection of ligament and TFCC tears compared to a T2/PDFs sequence. Chang et al. [21] used a MEDIC sequence at 7T and reported excellent visualization of several anatomic structures at the wrist including ligaments, nerves, and vessels. Superficial low intensity artifacts described by Fujinaga [22] at the femoral condyle were also present in our study, but they only moderately lowered the image quality.

In our study, we demonstrated that high-resolution 2D PDFs provided constantly high image quality scores regarding all assessed items combined with high SNR/CNR values. The low degree of artifacts and the lowest reduction in image quality in the patient group compared to the volunteers further underline the robustness of the sequence. Hence, we recommend including or keeping 2D PDFs in routine imaging protocols of the wrist, as has also been recommended elsewhere [1]. We support the findings of Jung et al. [7], who reported a 2D TSE sequence to be superior ($p < 0.01$) in the visualization of the scapholunate ligament and wrist cartilage ($p = 0.04$) when compared to a 3D gradient-echo sequence. Yamabe [2] reported a 2D FSE sequence to have superior anatomic delineation of the SL ligament ($p = 0.013$) when compared to a 3D FSE sequence in 11 healthy volunteers at 3T MRI of the wrist. In our study, the 3D PDFs SPACE sequence was inferior to all other sequences except for the degree of artifacts in patients when compared to 3D TrueFISP. Most likely this is due to the nature of TSE-based sequences, which are less prone to artifacts when compared to GRE sequences [23]. In the light of the disadvantages, we do not recommend 3D PDFs SPACE in its current form for wrist imaging. Van Dyck et al. [24] also observed...
<table>
<thead>
<tr>
<th>patients</th>
<th>SNR</th>
<th>cartilage</th>
<th>bone</th>
<th>muscle</th>
<th>fluid</th>
<th>tendon</th>
<th>TFCC</th>
<th>CNR</th>
<th>cartilage</th>
<th>bone</th>
<th>muscle</th>
<th>fluid-carte</th>
<th>bone</th>
<th>tendon</th>
<th>overall</th>
<th>cartilage</th>
<th>TFCC</th>
<th>ligaments</th>
<th>artifacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D vs.</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>n.s.</td>
<td>2D</td>
<td>(p = 0.40)</td>
<td>2D</td>
<td>(p = 0.01)</td>
</tr>
<tr>
<td>SPACE</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>n.s.</td>
<td>2D</td>
<td>(p = 0.05)</td>
<td>2D</td>
<td>(p = 0.01)</td>
</tr>
<tr>
<td>TrueFISP</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>n.s.</td>
<td>2D</td>
<td>n.s.</td>
<td>2D</td>
<td>(p = 0.08)</td>
<td>2D</td>
<td>(p = 0.01)</td>
</tr>
<tr>
<td>2D vs.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>2D</td>
<td>(p = 0.72)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>2D</td>
<td>(p = 0.29)</td>
<td>n.s.</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>MEDIC</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>2D</td>
<td>(p = 0.66)</td>
<td>n.s.</td>
<td>MEDIC</td>
<td>n.s.</td>
<td>(p = 0.81)</td>
<td>2D</td>
<td>(p = 0.01)</td>
<td>(p = 0.71)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>2D vs.</td>
<td>SPACE</td>
<td>TrueFISP</td>
<td>(p < 0.05)</td>
<td>TrueFISP</td>
<td>(p < 0.05)</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>n.s.</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>n.s.</td>
<td>TrueFISP</td>
</tr>
<tr>
<td>TrueFISP</td>
<td>MEDIC</td>
</tr>
<tr>
<td>2D vs.</td>
<td>TrueFISP</td>
<td>MEDIC</td>
<td>(p = 0.01)</td>
<td>TrueFISP</td>
<td>(p = 0.01)</td>
<td>n.s.</td>
<td>MEDIC</td>
<td>n.s.</td>
<td>TrueFISP</td>
<td>MEDIC</td>
<td>(p = 0.01)</td>
<td>MEDIC</td>
<td>(p = 0.01)</td>
<td>n.s.</td>
<td>n.s.</td>
<td>MEDIC</td>
<td>MEDIC</td>
<td>MEDIC</td>
<td>n.s.</td>
</tr>
<tr>
<td>MEDIC</td>
<td>n.s.</td>
</tr>
<tr>
<td>TrueFISP</td>
<td>MEDIC</td>
<td>n.s.</td>
</tr>
<tr>
<td>2D vs.</td>
<td>MEDIC</td>
<td>n.s.</td>
</tr>
<tr>
<td>MEDIC</td>
<td>n.s.</td>
</tr>
<tr>
<td>SPACE vs.</td>
<td>TrueFISP</td>
<td>SPACE</td>
<td>(p < 0.01)</td>
<td>TrueFISP</td>
<td>(p < 0.01)</td>
<td>n.s.</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>n.s.</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>TrueFISP</td>
<td>n.s.</td>
<td>TrueFISP</td>
</tr>
<tr>
<td>TrueFISP</td>
<td>MEDIC</td>
<td>n.s.</td>
</tr>
<tr>
<td>2D vs.</td>
<td>MEDIC</td>
<td>n.s.</td>
</tr>
<tr>
<td>MEDIC</td>
<td>n.s.</td>
</tr>
<tr>
<td>TrueFISP</td>
<td>MEDIC</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

SNR = signal-to-noise ratio, CNR = contrast-to-noise ratio, 2D = 2D PD fs, TFCC = triangular fibrocartilage complex, n.s. = not significant/nicht significant.
3 D SPACE to be inferior in the assessment of knee pathologies at 3 T. In this study, 3 D SPACE had a lower specificity for assessing cartilage lesions and lower accuracies for detecting medial meniscus pathologies. Kijowski et al. [25] found a technically similar 3 D FSE CUBE sequence to have a lower specificity compared to a routine protocol in detecting cartilage lesions at the knee, most likely due to decreased in-plane spatial resolution and image blurring due to acquisition of high spatial frequencies late in the echo train. However, there is ongoing progress in the optimization of the SPACE technique with encouraging results [4, 26, 27]. Consequently, there might be a role in the future, for instance in the postoperative setting.
Limitations

First, we have to acknowledge that the study population with 34 included individuals was relatively small. A larger study cohort would allow for higher levels of representativeness and generalizability.

Only in 5 of 18 patients and in none of the healthy volunteers arthroscopy or open surgery was available to correlate pathologic findings. Therefore, lesion detection ability, i.e., sensitivity, specificity, and positive/negative predictive values, could not be systematically evaluated. Specific advantages, for instance the visualization of cartilage damage in 3D TrueFISP, could only be operatively objectified in specific cases. However, healthy individuals and patients with general wrist pain without instability rarely undergo open surgery or arthroscopy and diagnosis is usually based on imaging and clinical examination [1, 2, 7, 8]. Also, studies at the wrist with surgical confirmation report on small samples with a bias towards patients with lesions [28]. Although readers were blinded to the sequences, the specific morphologic features of the sequences were apparent when reviewing and may have potentially biased the imaging analysis. Furthermore, the approach to SNR measurements by using the standard deviation of noise in images acquired with parallel imaging is known to be prone to inaccuracies [29]. However, the more exact “difference method” [29] would double the examination time and therefore is hardly feasible in a clinical setting. Due to this circumstance and the fact that also other feasible methods in clinical practice are lacking, the “standard deviation method” remains widely used in comparing MRI sequences while the possible inaccuracy has to be acknowledged [3, 10, 11]. Another limitation we have to acknowledge is the fact that imaging parameters that have influence on the SNR were not equal. Besides differences regarding imaging matrix, TE and TR, the differences in voxel size are of importance. Regarding 3D sequences, TrueFISP was acquired with an in-plane resolution of 0.5 mm compared to the other 3D sequences with 0.4 mm. We kept the original resolution as provided by the manufacturer to maintain the potential advantages for wrist imaging (depiction of thin cartilage, TFCC, ligaments) of the thinner 3D MEDIC and 3D PIFs SPACE.

However, the SNR of TrueFISP may therefore be overrated. The primary acquisition with equal in-plane resolutions in 0.4 or 0.5 mm would reduce the SNR of the 3D TrueFISP or increase the SNR of 3D PIFs SPACE and 3D MEDIC, respectively and thus improve comparability regarding this aspect. This is also a problem many studies investigating new sequences or applying sequences on other joints are facing [30–32].

Conclusion

When imaging the wrist at 3 Tesla, 3D TrueFISP may be recommended for cartilage imaging. 3D MEDIC was advantageous in the evaluation of ligaments and the TFCC as well as for general wrist imaging. 2D PIFs provided high scores in all assessed items and should be used in standard wrist protocols and should not be replaced by any of the tested 3D sequences. However, we recommend the additional use of 3D sequences tailored to the clinical question. The tested 3D PIFs SPACE sequence is currently not advantageous when compared to the other sequences of our study.

Clinical relevance

When imaging the wrist at 3 Tesla, the imaging protocol should be tailored to the clinical question and to the patients themselves. 3D imaging sequences provide excellent image quality, i.e. TrueFISP for cartilage imaging and MEDIC for ligaments and the TFCC. In the postoperative situation or when patient movement due to pain is present, 2D PIFs is more robust compared to the 3D sequences and maintains a high image quality. Therefore, 2D PIFs accompanied by either 3D TrueFISP or 3D MEDIC is recommended in modern wrist protocols.

References

Rehnitz C et al. Comparison of Modern... Fortschr Röntgenstr 2016; 188: 753–762