Klin Monbl Augenheilkd 2016; 233(10): 1149-1155
DOI: 10.1055/s-0042-101858
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Netzhaut-OCT: vitreoretinale Grenzfläche

Retinal OCT: Vitreoretinal Interface
W. J. Mayer
1   Augenklinik, Ludwig-Maximilians-Universität München
,
C. Haritoglou
2   Augenklinik Herzog-Carl-Theodor, München
› Author Affiliations
Further Information

Publication History

eingereicht 16 November 2015

akzeptiert 10 January 2016

Publication Date:
09 May 2016 (online)

Zusammenfassung

Der Goldstandard bei der Beurteilung der vitreoretinalen Grenzfläche (VRGF) ist die hochauflösende OCT. Es gilt, für die entsprechenden Pathologien die richtigen Scan-Modalitäten auszuwählen, um das Gesamtausmaß an Veränderungen, nicht nur an der VRGF, sondern auch in allen Netzhautschichten foveal und parafoveal zu erfassen. Hierzu stehen Raster-Scans, radiäre Scans und „En-Face“-Aufnahmen zur Verfügung. Für den Erfolg einer chirurgischen Intervention bei Behandlungen von vitreomakulären Interface-Erkrankungen haben sich in der hochauflösenden OCT-Untersuchung neben Veränderungen am vitreoretinalen Interface vor allem morphologische Veränderungen der äußeren Netzhautschichten als prognostische Marker erwiesen. Der folgende Artikel gibt einen aktuellen Überblick über mögliche OCT-Untersuchungsmodalitäten sowie über korrelierende Aspekte von morphologischen und funktionellen Befunden.

Abstract

The gold standard for the assessment of the vitreoretinal interface (VRI) is high resolution OCT. It is therefore essential to select the appropriate scan modalities to detect all morphological changes in different diseases, not only at the VRI, but also in all layers of the retina and in the foveal and parafoveal areas. These can be raster scans, radial scans or “en face” scans. Morphological changes at the VRI and especially in the outer retinal layers are good prognostic factors in high resolution OCT for the success of surgery for vitreomacular interface disorders. The following article gives an overview of current OCT procedures as well as correlations between morphological and functional findings.

 
  • Literatur

  • 1 Helmholtz HV. Description of an ophthalmoscope for examining the retina in the living eye. AMA Arch Ophthalmol 1951; 46: 565-583
  • 2 Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science 1991; 254: 1178-1181
  • 3 Haritoglou C, Schumann RG, Kampik A et al. Glial cell proliferation under the internal limiting membrane in a patient with cellophane maculopathy. Arch Ophthalmol 2007; 125: 1301-1302
  • 4 Kampik A. Pathology of epiretinal membrane, idiopathic macular hole, and vitreomacular traction syndrome. Retina 2012; 32 (Suppl. 02) S194-S198
  • 5 Messmer EM, Heidenkummer HP, Kampik A. Ultrastructure of epiretinal membranes associated with macular holes. Graefes Arch Clin Exp Ophthalmol 1998; 236: 248-254
  • 6 Falkner-Radler CI, Glittenberg C, Hagen S et al. Spectral-domain optical coherence tomography for monitoring epiretinal membrane surgery. Ophthalmology 2010; 117: 798-805
  • 7 Kim JH, Kim YM, Chung EJ et al. Structural and functional predictors of visual outcome of epiretinal membrane surgery. Am J Ophthalmol 2012; 153: 103-110 e101
  • 8 Staurenghi G, Sadda S, Chakravarthy U et al. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology 2014; 121: 1572-1578
  • 9 Itoh Y, Inoue M, Rii T et al. Correlation between length of foveal cone outer segment tips line defect and visual acuity after macular hole closure. Ophthalmology 2012; 119: 1438-1446
  • 10 Mayer WJ, Vogel M, Neubauer A et al. Pars plana vitrectomy and internal limiting membrane peeling in epimacular membranes: correlation of function and morphology across the macula. Ophthalmologica 2013; 230: 9-17
  • 11 Oster SF, Mojana F, Brar M et al. Disruption of the photoreceptor inner segment/outer segment layer on spectral domain-optical coherence tomography is a predictor of poor visual acuity in patients with epiretinal membranes. Retina 2010; 30: 713-718
  • 12 Midena E. [Microperimetry]. Arch Soc Esp Oftalmol 2006; 81: 183-186
  • 13 Midena E, Vujosevic S, Cavarzeran F et al. Normal values for fundus perimetry with the microperimeter MP1. Ophthalmology 2010; 117: 1571-1576 1576.e1
  • 14 Uchino E, Uemura A, Ohba N. Initial stages of posterior vitreous detachment in healthy eyes of older persons evaluated by optical coherence tomography. Arch Ophthalmol 2001; 119: 1475-1479
  • 15 Foos RY, Wheeler NC. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology 1982; 89: 1502-1512
  • 16 Novak MA, Welch RB. Complications of acute symptomatic posterior vitreous detachment. Am J Ophthalmol 1984; 97: 308-314
  • 17 Gupta P, Yee KM, Garcia P et al. Vitreoschisis in macular diseases. Br J Ophthalmol 2011; 95: 376-380
  • 18 Duker JS, Kaiser PK, Binder S et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 2013; 120: 2611-2619
  • 19 Maier MM, Feucht N, Burzer S et al. [Vitreomacular Traction Syndrome (VMTS)]. Klin Monatsbl Augenheilkd 2013; 230: 920-928
  • 20 Bottos J, Elizalde J, Rodrigues EB et al. Classifications of vitreomacular traction syndrome: diameter vs. morphology. Eye (Lond) 2014; 28: 1107-1112
  • 21 Abraham S, Wand K, Stumpfe S et al. [Unclear retinopathy after intravitreal injection of ocriplasmin]. Ophthalmologe 2015; DOI: 10.1007/s00347-015-0080-0.
  • 22 Johnson MW, Fahim AT, Rao RC. Acute ocriplasmin retinopathy. Retina 2015; 35: 1055-1058
  • 23 Maier M, Abraham S, Frank C et al. [Ocriplasmin as a treatment option for symptomatic vitreomacular traction with and without macular hole: First clinical experiences]. Ophthalmologe 2015; 112: 990-994
  • 24 Theodossiadis GP, Grigoropoulos VG, Theodoropoulou S et al. Spontaneous resolution of vitreomacular traction demonstrated by spectral-domain optical coherence tomography. Am J Ophthalmol 2014; 157: 842-851 e841
  • 25 Mitchell P, Smith W, Chey T et al. Prevalence and associations of epiretinal membranes. The Blue Mountains Eye Study, Australia. Ophthalmology 1997; 104: 1033-1040
  • 26 Gandorfer A, Schumann R, Scheler R et al. Pores of the inner limiting membrane in flat-mounted surgical specimens. Retina 2011; 31: 977-981
  • 27 Cheng L, Freeman WR, Ozerdem U et al. Prevalence, correlates, and natural history of epiretinal membranes surrounding idiopathic macular holes. Virectomy for Macular Hole Study Group. Ophthalmology 2000; 107: 853-859
  • 28 Rahimy E, Rayess N, Maguire JI et al. Radial versus raster spectral-domain optical coherence tomography scan patterns for detection of macular pathology. Am J Ophthalmol 2014; 158: 345-353.e2
  • 29 Maier MM, Rass S, Mueller C et al. [Transconjunctival sutureless pars plana vitrectomy and Brilliant Peel (BP)-assisted ILM peeling in patients with macular holes]. Klin Monatsbl Augenheilkd 2013; 230: 701-706
  • 30 Mayer WJ, Reznicek L, Neubauer AS et al. [Functional and morphological correlations in macular hole surgery]. Klin Monatsbl Augenheilkd 2014; 231: 54-60
  • 31 Schumann RG, Compera D, Schaumberger MM et al. Epiretinal membrane characteristics correlate with photoreceptor layer defects in lamellar macular holes and macular pseudoholes. Retina 2015; 35: 727-735
  • 32 Bottoni F, Deiro AP, Giani A et al. The natural history of lamellar macular holes: a spectral domain optical coherence tomography study. Graefes Arch Clin Exp Ophthalmol 2013; 251: 467-475
  • 33 Chin EK, Almeida DR, Sohn EH. Structural and functional changes after macular hole surgery: a review. Int Ophthalmol Clin 2014; 54: 17-27