Klin Monbl Augenheilkd 2016; 233(03): 243-250
DOI: 10.1055/s-0042-101556
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Albinimus und das Spektrum der Fundushypopigmentierung, der Makulahypoplasie und des Nystagmus

Albinism and the Range of Fundus Hypopigmentation, Macular Hypoplasia, and Nystagmus
M. N. Preising
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
,
B. Lorenz
Klinik und Poliklinik für Augenheilkunde, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen
› Author Affiliations
Further Information

Publication History

eingereicht 15 January 2016

akzeptiert 19 January 2016

Publication Date:
24 March 2016 (online)

Zusammenfassung

Der Albinismus ist eine Erkrankung, die sich ophthalmologisch als reduzierte Pigmentierung des retinalen und iridalen Pigmentepithels sowie des Iris- und des Aderhautstromas darstellt. Zusammen mit der reduzierten Pigmentierung finden sich morphologische Veränderungen der Netzhaut und des Sehnervs, deren funktioneller Zusammenhang bislang nicht ausreichend geklärt ist. Diese Übersichtsarbeit fasst die genetischen Ursachen der beeinträchtigten Pigmentsynthese und Pigmentverteilung zusammen und bewertet die Variabilität in der Ausprägung der Symptome des Albinismus im Rahmen der Differenzialdiagnose mit anderen Erkrankungen der Netzhautentwicklung.

Abstract

From the ophthalmological view, albinism is a disorder of reduced pigmentation of the retinal and irdial pigment epithelium and the iris and choroid stroma. The reduced pigmentation is accompanied by morphological changes in the retina and the optic nerve. The functional relationship of these morphological changes is not yet well understood. This review summarises the genetic causes of reduced pigment synthesis and impaired pigment distribution, and discusses the variability of expression of albinism symptoms, in the light of other disorders affecting retinal development.

 
  • Literatur

  • 1 Cichorek M, Wachulska M, Stasiewicz A et al. Skin melanocytes: biology and development. Postepy Dermatol Alergol 2013; 30: 30-41
  • 2 Jimbow K, Quevedo jr. WC, Fitzpatrick TB et al. Some aspects of melanin biology: 1950–1975. J Invest Dermatol 1976; 67: 72-89
  • 3 Watabe H, Valencia JC, Yasumoto K et al. Regulation of tyrosinase processing and trafficking by organellar pH and by proteasome activity. J Biol Chem 2004; 279: 7971-7981
  • 4 Kobayashi T, Hearing VJ. Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J Cell Sci 2007; 120: 4261-4268
  • 5 Van Raamsdonk CD, Barsh GS, Wakamatsu K et al. Independent regulation of hair and skin color by two G protein-coupled pathways. Pigment Cell Melanoma Res 2009; 22: 819-826
  • 6 Burke JM, Kaczara P, Skumatz CM et al. Dynamic analyses reveal cytoprotection by RPE melanosomes against non-photic stress. Mol Vis 2011; 17: 2864-2877
  • 7 Kruijt B, Franssen L, Prick LJ et al. Ocular straylight in albinism. Optom Vis Sci 2011; 88: E585-E592
  • 8 Oetting WS, King RA. Molecular analysis of type I-A (tyrosinase negative) oculocutaneous albinism. Hum Genet 1992; 90: 258-262
  • 9 Giebel LB, Tripathi RK, Strunk KM et al. Tyrosinase gene mutations associated with type IB (“yellow”) oculocutaneous albinism. Am J Hum Genet 1991; 48: 1159-1167
  • 10 Montoliu L, Gronskov K, Wei AH et al. Increasing the complexity: new genes and new types of albinism. Pigment Cell Melanoma Res 2014; 27: 11-18
  • 11 Morice-Picard F, Lasseaux E, François S et al. SLC24A5 mutations are associated with non-syndromic oculocutaneous albinism. J Invest Dermatol 2014; 134: 568-571
  • 12 Kausar T, Jaworek TJ, Tariq N et al. Genetic studies of TYRP1 and SLC45A2 in Pakistani patients with nonsyndromic oculocutaneous albinism. J Invest Dermatol 2013; 133: 1099-1102
  • 13 Cronin TH, Hertle RW, Ishikawa H et al. Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus. J AAPOS 2009; 13: 563-566
  • 14 Wilk MA, McAllister JT, Cooper RF et al. Relationship between foveal cone specialization and pit morphology in albinism. Invest Ophthalmol Vis Sci 2014; 55: 4186-4198
  • 15 Apkarian P, Reits D, Spekreijse H et al. A decisive electrophysiological test for human albinism. Electroencephalogr Clin Neurophysiol 1983; 55: 513-531
  • 16 Preising MN, Forster H, Gonser M et al. Screening of TYR, OCA2, GPR143, and MC1R in patients with congenital nystagmus, macular hypoplasia and fundus hypopigmentation indicating albinism. Mol Vis 2011; 17: 939-948
  • 17 Käsmann-Kellner B, Seitz B. Phänotyp des visuellen Systems bei okulokutanem und okulärem Albinismus. Ophthalmologe 2007; 104: 648-661
  • 18 Preising M, op de Laak JP, Lorenz B. Deletion in the OA1 gene in a family with congenital X linked nystagmus. Br J Ophthalmol 2001; 85: 1098-1103
  • 19 Bassi MT, Schiaffino MV, Renieri A et al. Cloning of the gene for ocular albinism type 1 from the distal short arm of the X chromosome. Nat Genet 1995; 10: 13-19
  • 20 Giordano F, Bonetti C, Surace EM et al. The ocular albinism type 1 (OA1) G-protein-coupled receptor functions with MART-1 at early stages of melanogenesis to control melanosome identity and composition. Hum Mol Genet 2009; 18: 4530-4545
  • 21 Fukuda N, Naito S, Masukawa D et al. Expression of ocular albinism 1 (OA1), 3, 4- dihydroxy- L-phenylalanine (DOPA) receptor, in both neuronal and non-neuronal organs. Brain Res 2015; 1602: 62-74
  • 22 Garner A, Jay BS. Macromelanosomes in X-linked ocular albinism. Histopathology 1980; 4: 243-254
  • 23 Lorenz B. Albinismus: Aktuelle klinische und genetische Aspekte einer wichtigen Differentialdiagnose des kongenitalen Nystagmus. Ophthalmologe 1997; 94: 534-544
  • 24 Han R, Wang X, Wang D et al. GPR143 gene mutations in five chinese families with x-linked congenital nystagmus. Sci Rep 2015; 5: 12031
  • 25 Liu JY, Ren X, Yang X et al. Identification of a novel GPR143 mutation in a large Chinese family with congenital nystagmus as the most prominent and consistent manifestation. J Hum Genet 2007; 52: 565-570
  • 26 Lindberg JG. Clinical investigations on depigmentation of the pupillary border and translucency of the iris in cases of senile cataract and in normal eyes in elderly persons. Acta Ophthalmol Suppl 1989; 190: 1-96
  • 27 Chong GT, Farsiu S, Freedman SF et al. Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography. Arch Ophthalmol 2009; 127: 37-44
  • 28 McAllister JT, Dubis AM, Tait DM et al. Arrested development: high-resolution imaging of foveal morphology in albinism. Vision Res 2010; 50: 810-817
  • 29 Mohammad S, Gottlob I, Kumar A et al. The functional significance of foveal abnormalities in albinism measured using spectral-domain optical coherence tomography. Ophthalmology 2011; 118: 1645-1652
  • 30 Healey N, McLoone E, Mahon G et al. Investigating the relationship between foveal morphology and refractive error in a population with infantile nystagmus syndrome. Invest Ophthalmol Vis Sci 2013; 54: 2934-2939
  • 31 Thomas MG, Crosier M, Lindsay S et al. Abnormal retinal development associated with FRMD7 mutations. Hum Mol Genet 2014; 23: 4086-4093
  • 32 Choi JH, Shin JH, Seo JH et al. A start codon mutation of the FRMD7 gene in two Korean families with idiopathic infantile nystagmus. Sci Rep 2015; 5: 13003
  • 33 Gupta S, Pathak E, Chaudhry VN et al. A novel mutation in FRMD7 causes X-linked idiopathic congenital nystagmus in a North Indian family. Neurosci Lett 2015; 597: 170-175
  • 34 Yonehara K, Fiscella M, Drinnenberg A et al. Congenital nystagmus gene FRMD7 is necessary for establishing a neuronal circuit asymmetry for direction selectivity. Neuron 2016; 89: 177-193
  • 35 Neveu MM, Holder GE, Sloper JJ et al. Optic chiasm formation in humans is independent of foveal development. Eur J Neurosci 2005; 22: 1825-1829
  • 36 Jiao Z, Zhang ZG, Hornyak TJ et al. Dopachrome tautomerase (Dct) regulates neural progenitor cell proliferation. Dev Biol 2006; 296: 396-408
  • 37 Tief K, Schmidt A, Aguzzi A et al. Tyrosinase is a new marker for cell populations in the mouse neural tube. Dev Dyn 1996; 205: 445-456
  • 38 Shaham O, Menuchin Y, Farhy C et al. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31: 351-376
  • 39 Lorenz B, Gampe E. Analyse von 180 Patienten mit sensorischem Defektnystagmus (SDN) und kongenitalem idiopathischem Nystagmus (CIN). Klin Monatsbl Augenheilkd 2001; 218: 3-12
  • 40 Al-Araimi M, Pal B, Poulter JA et al. A new recessively inherited disorder composed of foveal hypoplasia, optic nerve decussation defects and anterior segment dysgenesis maps to chromosome 16q23.3–24.1. Mol Vis 2013; 19: 2165-2172
  • 41 Hägglund MG, Hellsten SV, Bagchi S et al. Transport of L-glutamine, L-alanine, L-arginine and L-histidine by the neuron-specific Slc38a8 (SNAT8) in CNS. J Mol Biol 2015; 427: 1495-1512
  • 42 Poulter JA, Al-Araimi M, Conte I et al. Recessive mutations in SLC38A8 cause foveal hypoplasia and optic nerve misrouting without albinism. Am J Hum Genet 2013; 93: 1143-1150
  • 43 King RA, Jackson IJ, Oetting WS. Human Albinism and Mouse Models. In: Wright AF, Jay B, eds. Molecular Genetics of Inherited Eye Disorders. Chur: Harwood Academic Publishers; 1994: 89-112
  • 44 Simeonov DR, Wang X, Wang C et al. DNA variations in oculocutaneous albinism: an updated mutation list and current outstanding issues in molecular diagnostics. Hum Mutat 2013; 34: 827-835
  • 45 Gargiulo A, Testa F, Rossi S et al. Molecular and clinical characterization of albinism in a large cohort of Italian patients. Invest Ophthalmol Vis Sci 2011; 52: 1281-1289
  • 46 Mauri L, Barone L, Al Oum M et al. SLC45A2 mutation frequency in Oculocutaneous Albinism Italian patients doesnʼt differ from other European studies. Gene 2014; 533: 398-402
  • 47 Wei AH, Zang DJ, Zhang Z et al. Exome sequencing identifies SLC24A5 as a candidate gene for nonsyndromic oculocutaneous albinism. J Invest Dermatol 2013; 133: 1834-1840
  • 48 Gronskov K, Dooley CM, Ostergaard E et al. Mutations in c10orf11, a melanocyte-differentiation gene, cause autosomal-recessive albinism. Am J Hum Genet 2013; 92: 415-421
  • 49 Bin BH, Bhin J, Yang SH et al. Membrane-Associated Transporter Protein (MATP) regulates melanosomal pH and influences tyrosinase activity. PLoS One 2015; 10: e0129273
  • 50 Bellono NW, Escobar IE, Lefkovith AJ et al. An intracellular anion channel critical for pigmentation. Elife 2014; 3: e04543