A 35-year-old woman underwent a Roux-en-Y hepaticojejunostomy in 2001 for a bile duct injury that occurred during a cholecystectomy for cholelithiasis. After the surgery, she began to experience episodes of relapsing cholangitis, approximately once a year, which were treated with antibiotics. However, from 2012 onwards, the episodes of cholangitis increased in frequency to five or six episodes per year, including some episodes that required prolonged hospitalization of up to 2 months. In 2014 she was referred to our hospital, where she was found to have clinical evidence of chronic liver disease that was classified as secondary biliary cirrhosis, and magnetic resonance cholangiopancreatography (MRCP) revealed multiple left intrahepatic stones (Fig. 1).

Endoscopic retrograde cholangiopancreatography (ERCP) was not attempted by enteroscopy because of the lack of the necessary device and accessories. The patient was not a candidate for left hepatectomy because of chronic liver disease, so she was placed on a waiting list for liver transplantation.

Because of the persistence of her cholangitis, we decided to attempt percutaneous cholangioscopy with the single-operator direct-visualization SpyGlass system (Boston Scientific Inc., Natick, Massachusetts, USA) and laser application. Initially, a percutaneous 8-Fr catheter was placed radiologically to access the left bile duct (Fig. 2). After 3 weeks, the SpyGlass system was used and laser lithotripsy was applied (Fig. 3; Video 1), with the stone fragments being removed in an antegrade fashion using the balloon of a biliary extraction catheter (Cook Medical, Inc., Winston Salem, North Carolina, USA).

On follow-up MRCP, no evidence of intrahepatic stones was observed (Fig. 4). The clinical outcome was successful, and the patient has had no new episodes of cholangitis in 10 months of follow-up. Surgery has traditionally been considered the best option for intrahepatic stones [1]. Although enteroscopy-assisted access is an acceptable option to treat intrahepatic cholelithiasis, lack of equipment may preclude this option. Percutaneous cholangioscopy is also an acceptable option, especially in the presence of difficult intrahepatic stones or distal bile duct stenosis [2]. Other access options have included transgastric and percutaneous transhepatic rendezvous maneuvers [3].
To the best of our knowledge, this is the first report of percutaneous cholangioscopy using SpyGlass with direct laser application (without the rendezvous technique) in a patient with complex intrahepatic stones and a history of recurrent cholangitis and chronic liver disease.

Competing interests: None

Fig. 3 Radiographic images showing: a cholangiography being performed with the SpyGlass system; b the SpyGlass in position in the left intrahepatic duct during laser application; c no evidence of intrahepatic lithiasis following laser lithotripsy and extraction of the stone fragments.

Fig. 4 Follow-up magnetic resonance cholangiopancreatography (MRCP) image showing no evidence of intrahepatic lithiasis (arrow in the site where lithiasis was previously observed).

Fig. 5 Follow-up magnetic resonance cholangiopancreatography (MRCP) image showing no evidence of intrahepatic lithiasis (arrow in the site where lithiasis was previously observed).

Video 1 Percutaneous cholangioscopy with the single-operator direct-visualization SpyGlass system and application of laser lithotripsy.

References

Félix I. Téllez-Ávila, Gilberto Duarte-Medrano, Francisco Valdovinos-Andraca, Víctor Gallardo-Cabrera, David R. Herrera-Mora

Department of Endoscopy, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico

Corresponding author

Félix I. Téllez-Ávila, MD, PhD

Endoscopy Department

Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán

Avenida Vasco de Quiroga No. 15

Colonia Belsario Domínguez Sección XVI

Delegación Tlalpan C.P. 14080 Ciudad de México

México

Fax: +52-55-54870900

felixtelleza@gmail.com

Bibliography

DOI http://dx.doi.org/10.1055/s-0042-100809

Endoscopy 2016; 48: E49–E50

© Georg Thieme Verlag KG Stuttgart · New York

ISSN 0013-726X