Semin Reprod Med 2022; 40(01/02): 042-052
DOI: 10.1055/s-0041-1742259
Review Article

Non-PCOS Hyperandrogenic Disorders in Adolescents

M. Rebeca Esquivel-Zuniga
1   Division of Endocrinology and Metabolism, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
,
Cassandra K. Kirschner
2   Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia
,
3   Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
4   Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, Virginia
,
1   Division of Endocrinology and Metabolism, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia
4   Center for Research in Reproduction, University of Virginia School of Medicine, Charlottesville, Virginia
› Author Affiliations
Funding Financial support for the writing, permission requests, and article processing charges related to this manuscript was provided by the National Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development research grant NIH R01 HD102060. NIH/NICHD. NIH R01 HD102060.

Abstract

Hyperandrogenism—clinical features resulting from increased androgen production and/or action—is not uncommon in peripubertal girls. Hyperandrogenism affects 3 to 20% of adolescent girls and often is associated with hyperandrogenemia. In prepubertal girls, the most common etiologies of androgen excess are premature adrenarche (60%) and congenital adrenal hyperplasia (CAH; 4%). In pubertal girls, polycystic ovary syndrome (PCOS; 20–40%) and CAH (14%) are the most common diagnoses related to androgen excess. Androgen-secreting ovarian or adrenal tumors are rare (0.2%). Early pubic hair, acne, and/or hirsutism are the most common clinical manifestations, but signs of overt virilization in adolescent girls—rapid progression of pubic hair or hirsutism, clitoromegaly, voice deepening, severe cystic acne, growth acceleration, increased muscle mass, and bone age advancement past height age—should prompt detailed evaluation. This article addresses the clinical manifestations of and management considerations for non-PCOS-related hyperandrogenism in adolescent girls. We propose an algorithm to aid diagnostic evaluation of androgen excess in this specific patient population.



Publication History

Article published online:
20 January 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Hickey M, Doherty DA, Atkinson H. et al. Clinical, ultrasound and biochemical features of polycystic ovary syndrome in adolescents: implications for diagnosis. Hum Reprod 2011; 26 (06) 1469-1477
  • 2 Gambineri A, Fanelli F, Prontera O. et al. Prevalence of hyperandrogenic states in late adolescent and young women: epidemiological survey on Italian high-school students. J Clin Endocrinol Metab 2013; 98 (04) 1641-1650
  • 3 Dubey P, Reddy SY, Alvarado L, Manuel SL, Dwivedi AK. Prevalence of at-risk hyperandrogenism by age and race/ethnicity among females in the United States using NHANES III. Eur J Obstet Gynecol Reprod Biol 2021; 260: 189-197
  • 4 Idkowiak J, Elhassan YS, Mannion P. et al. Causes, patterns and severity of androgen excess in 487 consecutively recruited pre- and post-pubertal children. Eur J Endocrinol 2019; 180 (03) 213-221
  • 5 van Hooff MH, Voorhorst FJ, Kaptein MB, Hirasing RA, Koppenaal C, Schoemaker J. Endocrine features of polycystic ovary syndrome in a random population sample of 14-16 year old adolescents. Hum Reprod 1999; 14 (09) 2223-2229
  • 6 Torchen LC, Tsai JN, Jasti P. et al. Hyperandrogenemia is common in asymptomatic women and is associated with increased metabolic risk. Obesity (Silver Spring) 2020; 28 (01) 106-113
  • 7 Azziz R, Sanchez LA, Knochenhauer ES. et al. Androgen excess in women: experience with over 1000 consecutive patients. J Clin Endocrinol Metab 2004; 89 (02) 453-462
  • 8 Yilmaz B, Yildiz BO. Endocrinology of hirsutism: from androgens to androgen excess disorders. Front Horm Res 2019; 53: 108-119
  • 9 Yildiz BO, Bolour S, Woods K, Moore A, Azziz R. Visually scoring hirsutism. Hum Reprod Update 2010; 16 (01) 51-64
  • 10 Teede HJ, Misso ML, Costello MF. et al; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod 2018; 33 (09) 1602-1618
  • 11 Karrer-Voegeli S, Rey F, Reymond MJ, Meuwly JY, Gaillard RC, Gomez F. Androgen dependence of hirsutism, acne, and alopecia in women: retrospective analysis of 228 patients investigated for hyperandrogenism. Medicine (Baltimore) 2009; 88 (01) 32-45
  • 12 Rosenfield RL. Normal and premature adrenarche. Endocr Rev 2021. Mar 31:bnab009. Online ahead of print. Accessed May 25, 2021 at: https://academic.oup.com/edrv/advance-article/doi/10.1210/endrev/bnab009/6206746
  • 13 Turcu AF, Rege J, Auchus RJ, Rainey WE. 11-Oxygenated androgens in health and disease. Nat Rev Endocrinol 2020; 16 (05) 284-296
  • 14 Pignatelli D, Pereira SS, Pasquali R. Androgens in congenital adrenal hyperplasia. Front Horm Res 2019; 53: 65-76
  • 15 Wierman ME, Beardsworth DE, Crawford JD. et al. Adrenarche and skeletal maturation during luteinizing hormone releasing hormone analogue suppression of gonadarche. J Clin Invest 1986; 77 (01) 121-126
  • 16 Reiter EO, Fuldauer VG, Root AW. Secretion of the adrenal androgen, dehydroepiandrosterone sulfate, during normal infancy, childhood, and adolescence, in sick infants, and in children with endocrinologic abnormalities. J Pediatr 1977; 90 (05) 766-770
  • 17 Sklar CA, Kaplan SL, Grumbach MM. Evidence for dissociation between adrenarche and gonadarche: studies in patients with idiopathic precocious puberty, gonadal dysgenesis, isolated gonadotropin deficiency, and constitutionally delayed growth and adolescence. J Clin Endocrinol Metab 1980; 51 (03) 548-556
  • 18 McCartney CR, Blank SK, Prendergast KA. et al. Obesity and sex steroid changes across puberty: evidence for marked hyperandrogenemia in pre- and early pubertal obese girls. J Clin Endocrinol Metab 2007; 92 (02) 430-436
  • 19 Mitamura R, Yano K, Suzuki N, Ito Y, Makita Y, Okuno A. Diurnal rhythms of luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol secretion before the onset of female puberty in short children. J Clin Endocrinol Metab 2000; 85 (03) 1074-1080
  • 20 Burt Solorzano CM, Helm KD, Patrie JT. et al. Increased adrenal androgens in overweight peripubertal girls. J Endocr Soc 2017; 1 (05) 538-552
  • 21 O'Reilly MW, Kempegowda P, Jenkinson C. et al. 11-Oxygenated C19 steroids are the predominant androgens in polycystic ovary syndrome. J Clin Endocrinol Metab 2017; 102 (03) 840-848
  • 22 Rege J, Turcu AF, Kasa-Vubu JZ. et al. 11-Ketotestosterone is the dominant circulating bioactive androgen during normal and premature adrenarche. J Clin Endocrinol Metab 2018; 103 (12) 4589-4598
  • 23 Torchen LC, Sisk R, Legro RS, Turcu AF, Auchus RJ, Dunaif A. 11-Oxygenated C19 steroids do not distinguish the hyperandrogenic phenotype of PCOS daughters from girls with obesity. J Clin Endocrinol Metab 2020; 105 (11) dgaa532
  • 24 Turcu AF, Nanba AT, Chomic R. et al. Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency. Eur J Endocrinol 2016; 174 (05) 601-609
  • 25 McCartney CR, Burt Solorzano CM, Patrie JT, Marshall JC, Haisenleder DJ. Estimating testosterone concentrations in adolescent girls: comparison of two direct immunoassays to liquid chromatography-tandem mass spectrometry. Steroids 2018; 140: 62-69
  • 26 Rosenfield RL. Clinical practice. Hirsutism. N Engl J Med 2005; 353 (24) 2578-2588
  • 27 Ibáñez L, Dimartino-Nardi J, Potau N, Saenger P. Premature adrenarche–normal variant or forerunner of adult disease?. Endocr Rev 2000; 21 (06) 671-696
  • 28 Remer T, Boye KR, Hartmann MF, Wudy SA. Urinary markers of adrenarche: reference values in healthy subjects, aged 3-18 years. J Clin Endocrinol Metab 2005; 90 (04) 2015-2021
  • 29 Sopher AB, Jean AM, Zwany SK. et al. Bone age advancement in prepubertal children with obesity and premature adrenarche: possible potentiating factors. Obesity (Silver Spring) 2011; 19 (06) 1259-1264
  • 30 Pere A, Perheentupa J, Peter M, Voutilainen R. Follow up of growth and steroids in premature adrenarche. Eur J Pediatr 1995; 154 (05) 346-352
  • 31 Ibañez L, Virdis R, Potau N. et al. Natural history of premature pubarche: an auxological study. J Clin Endocrinol Metab 1992; 74 (02) 254-257
  • 32 Oberfield SE, Amer T, Tyson D. et al. Altered sensitivity to low dose dexamethasone in a subset of patients with premature adrenarche. J Clin Endocrinol Metab 1994; 79 (04) 1102-1104
  • 33 Herman-Giddens ME, Slora EJ, Wasserman RC. et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics 1997; 99 (04) 505-512
  • 34 Ong KK, Potau N, Petry CJ. et al; Avon Longitudinal Study of Parents and Children Study Team. Opposing influences of prenatal and postnatal weight gain on adrenarche in normal boys and girls. J Clin Endocrinol Metab 2004; 89 (06) 2647-2651
  • 35 Remer T, Manz F. Role of nutritional status in the regulation of adrenarche. J Clin Endocrinol Metab 1999; 84 (11) 3936-3944
  • 36 Jabbar M, Pugliese M, Fort P, Recker B, Lifshitz F. Excess weight and precocious pubarche in children: alterations of the adrenocortical hormones. J Am Coll Nutr 1991; 10 (04) 289-296
  • 37 Ibáñez L, Potau N, Marcos MV, de Zegher F. Exaggerated adrenarche and hyperinsulinism in adolescent girls born small for gestational age. J Clin Endocrinol Metab 1999; 84 (12) 4739-4741
  • 38 Utriainen P, Jääskeläinen J, Romppanen J, Voutilainen R. Childhood metabolic syndrome and its components in premature adrenarche. J Clin Endocrinol Metab 2007; 92 (11) 4282-4285
  • 39 Oppenheimer E, Linder B, DiMartino-Nardi J. Decreased insulin sensitivity in prepubertal girls with premature adrenarche and acanthosis nigricans. J Clin Endocrinol Metab 1995; 80 (02) 614-618
  • 40 Potau N, Williams R, Ong K. et al. Fasting insulin sensitivity and post-oral glucose hyperinsulinaemia related to cardiovascular risk factors in adolescents with precocious pubarche. Clin Endocrinol (Oxf) 2003; 59 (06) 756-762
  • 41 Ibáñez L, Ong K, de Zegher F, Marcos MV, del Rio L, Dunger DB. Fat distribution in non-obese girls with and without precocious pubarche: central adiposity related to insulinaemia and androgenaemia from prepuberty to postmenarche. Clin Endocrinol (Oxf) 2003; 58 (03) 372-379
  • 42 Vuguin P, Linder B, Rosenfeld RG, Saenger P, DiMartino-Nardi J. The roles of insulin sensitivity, insulin-like growth factor I (IGF-I), and IGF-binding protein-1 and -3 in the hyperandrogenism of African-American and Caribbean Hispanic girls with premature adrenarche. J Clin Endocrinol Metab 1999; 84 (06) 2037-2042
  • 43 Liimatta J, Utriainen P, Laitinen T, Voutilainen R, Jääskeläinen J. Cardiometabolic risk profile among young adult females with a history of premature adrenarche. J Endocr Soc 2019; 3 (10) 1771-1783
  • 44 Ibáñez L, Potau N, Zampolli M, Riqué S, Saenger P, Carrascosa A. Hyperinsulinemia and decreased insulin-like growth factor-binding protein-1 are common features in prepubertal and pubertal girls with a history of premature pubarche. J Clin Endocrinol Metab 1997; 82 (07) 2283-2288
  • 45 Ibáñez L, Potau N, Zampolli M, Street ME, Carrascosa A. Girls diagnosed with premature pubarche show an exaggerated ovarian androgen synthesis from the early stages of puberty: evidence from gonadotropin-releasing hormone agonist testing. Fertil Steril 1997; 67 (05) 849-855
  • 46 Ibáñez L, de Zegher F, Potau N. Anovulation after precocious pubarche: early markers and time course in adolescence. J Clin Endocrinol Metab 1999; 84 (08) 2691-2695
  • 47 Ibañez L, Potau N, Virdis R. et al. Postpubertal outcome in girls diagnosed of premature pubarche during childhood: increased frequency of functional ovarian hyperandrogenism. J Clin Endocrinol Metab 1993; 76 (06) 1599-1603
  • 48 Burt Solorzano CM, McCartney CR. Polycystic ovary syndrome: ontogeny in adolescence. Endocrinol Metab Clin North Am 2021; 50 (01) 25-42
  • 49 Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol 2015; 145: 213-225
  • 50 Ibáñez L, Valls C, Ong K, Dunger DB, de Zegher F. Metformin therapy during puberty delays menarche, prolongs pubertal growth, and augments adult height: a randomized study in low-birth-weight girls with early-normal onset of puberty. J Clin Endocrinol Metab 2006; 91 (06) 2068-2073
  • 51 Ibáñez L, López-Bermejo A, Díaz M, Marcos MV, de Zegher F. Early metformin therapy (age 8-12 years) in girls with precocious pubarche to reduce hirsutism, androgen excess, and oligomenorrhea in adolescence. J Clin Endocrinol Metab 2011; 96 (08) E1262-E1267
  • 52 de Zegher F, García Beltrán C, López-Bermejo A, Ibáñez L. Metformin for rapidly maturing girls with central adiposity: less liver fat and slower bone maturation. Horm Res Paediatr 2018; 89 (02) 136-140
  • 53 Carmina E, Rosato F, Jannì A, Rizzo M, Longo RA. Extensive clinical experience: relative prevalence of different androgen excess disorders in 950 women referred because of clinical hyperandrogenism. J Clin Endocrinol Metab 2006; 91 (01) 2-6
  • 54 Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet 1985; 37 (04) 650-667
  • 55 Wilson RC, Nimkarn S, Dumic M. et al. Ethnic-specific distribution of mutations in 716 patients with congenital adrenal hyperplasia owing to 21-hydroxylase deficiency. Mol Genet Metab 2007; 90 (04) 414-421
  • 56 Speiser PW. Nonclassic adrenal hyperplasia. Rev Endocr Metab Disord 2009; 10 (01) 77-82
  • 57 Witchel SF. Nonclassic congenital adrenal hyperplasia. Curr Opin Endocrinol Diabetes Obes 2012; 19 (03) 151-158
  • 58 Moran C, Azziz R, Carmina E. et al. 21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: a multicenter study. Am J Obstet Gynecol 2000; 183 (06) 1468-1474
  • 59 Chrousos GP, Loriaux DL, Mann DL, Cutler Jr GB. Late-onset 21-hydroxylase deficiency mimicking idiopathic hirsutism or polycystic ovarian disease. Ann Intern Med 1982; 96 (02) 143-148
  • 60 Witchel SF. Non-classic congenital adrenal hyperplasia. Steroids 2013; 78 (08) 747-750
  • 61 Livadas S, Dracopoulou M, Dastamani A. et al. The spectrum of clinical, hormonal and molecular findings in 280 individuals with nonclassical congenital adrenal hyperplasia caused by mutations of the CYP21A2 gene. Clin Endocrinol (Oxf) 2015; 82 (04) 543-549
  • 62 Speiser PW, Arlt W, Auchus RJ. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2018; 103 (11) 4043-4088
  • 63 Azziz R, Hincapie LA, Knochenhauer ES, Dewailly D, Fox L, Boots LR. Screening for 21-hydroxylase-deficient nonclassic adrenal hyperplasia among hyperandrogenic women: a prospective study. Fertil Steril 1999; 72 (05) 915-925
  • 64 Dörr HG, Schulze N, Bettendorf M. et al. Genotype-phenotype correlations in children and adolescents with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Mol Cell Pediatr 2020; 7 (01) 8
  • 65 Weintrob N, Dickerman Z, Sprecher E, Galatzer A, Pertzelan A. Non-classical 21-hydroxylase deficiency in infancy and childhood: the effect of time of initiation of therapy on puberty and final height. Eur J Endocrinol 1997; 136 (02) 188-195
  • 66 Martin KA, Anderson RR, Chang RJ. et al. Evaluation and treatment of hirsutism in premenopausal women: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2018; 103 (04) 1233-1257
  • 67 Bidet M, Bellanné-Chantelot C, Galand-Portier MB. et al. Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab 2010; 95 (03) 1182-1190
  • 68 Trakakis E, Dracopoulou-Vabouli M, Dacou-Voutetakis C, Basios G, Chrelias C, Kassanos D. Infertility reversed by glucocorticoids and full-term pregnancy in a couple with previously undiagnosed nonclassic congenital adrenal hyperplasia. Fertil Steril 2011; 96 (04) 1048-1050
  • 69 Bornstein SR, Allolio B, Arlt W. et al. Diagnosis and treatment of primary adrenal insufficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2016; 101 (02) 364-389
  • 70 Trapp CM, Oberfield SE. Recommendations for treatment of nonclassic congenital adrenal hyperplasia (NCCAH): an update. Steroids 2012; 77 (04) 342-346
  • 71 Pugeat M, Raverot G, Plotton I. Androgen-secreting adrenal and ovarian neoplasms. In: Azziz R, Nestler JE, Dewailly D. eds. Androgen Excess Disorders in Women: Polycystic Ovary Syndrome and Other Disorders. Totowa, NJ: Humana Press; 2007: 75-84
  • 72 Brojeni NR, Salehian B. Androgen secreting ovarian tumors. MOJ Womens Health. 2017; 5 (06) 327-330
  • 73 Derksen J, Nagesser SK, Meinders AE, Haak HR, van de Velde CJ. Identification of virilizing adrenal tumors in hirsute women. N Engl J Med 1994; 331 (15) 968-973
  • 74 LeVee A, Suppogu N, Walsh C, Sacks W, Simon J, Shufelt C. The masquerading, masculinizing tumor: a case report and review of the literature. J Womens Health (Larchmt) 2021; 30 (07) 1047-1051
  • 75 Sarfati J, Bachelot A, Coussieu C, Meduri G, Touraine P. Study Group Hyperandrogenism in Postmenopausal Women. Impact of clinical, hormonal, radiological, and immunohistochemical studies on the diagnosis of postmenopausal hyperandrogenism. Eur J Endocrinol 2011; 165 (05) 779-788
  • 76 Arnaldi G, Martino M. Androgens in Cushing's syndrome. Front Horm Res 2019; 53: 77-91.s
  • 77 Lee PA, Nordenström A, Houk CP. et al; Global DSD Update Consortium. Global disorders of sex development update since 2006: perceptions, approach and care. Horm Res Paediatr 2016; 85 (03) 158-180
  • 78 Rosenfield RL. Hirsutism and the variable response of the pilosebaceous unit to androgen. J Investig Dermatol Symp Proc 2005; 10 (03) 205-208
  • 79 Reinehr T, Kulle A, Wolters B. et al. Steroid hormone profiles in prepubertal obese children before and after weight loss. J Clin Endocrinol Metab 2013; 98 (06) E1022-E1030
  • 80 Knudsen KL, Blank SK, Burt Solorzano C. et al. Hyperandrogenemia in obese peripubertal girls: correlates and potential etiological determinants. Obesity (Silver Spring) 2010; 18 (11) 2118-2124
  • 81 Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev 2016; 37 (05) 467-520
  • 82 Varlamov O, Bishop CV, Handu M. et al. Combined androgen excess and Western-style diet accelerates adipose tissue dysfunction in young adult, female nonhuman primates. Hum Reprod 2017; 32 (09) 1892-1902
  • 83 Barnes RB, Rosenfield RL, Ehrmann DA. et al. Ovarian hyperandrogynism as a result of congenital adrenal virilizing disorders: evidence for perinatal masculinization of neuroendocrine function in women. J Clin Endocrinol Metab 1994; 79 (05) 1328-1333
  • 84 Rosenfield RL. Clinical review: identifying children at risk for polycystic ovary syndrome. J Clin Endocrinol Metab 2007; 92 (03) 787-796
  • 85 Anderson AD, Solorzano CM, McCartney CR. Childhood obesity and its impact on the development of adolescent PCOS. Semin Reprod Med 2014; 32 (03) 202-213
  • 86 Torchen LC. Early phenotypes in polycystic ovary syndrome: some answers, more questions. Fertil Steril 2019; 111 (02) 266-267
  • 87 Stener-Victorin E, Padmanabhan V, Walters KA. et al. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr Rev 2020; 41 (04) bnaa010
  • 88 McCartney CR, Campbell RE. Abnormal GnRH pulsatility in polycystic ovary syndrome: recent insights. Curr Opin Endocr Metab Res 2020; 12: 78-84
  • 89 Dulka EA, Burger LL, Moenter SM. Ovarian androgens maintain high GnRH neuron firing rate in adult prenatally-androgenized female mice. Endocrinology 2020; 161 (01) bqz038
  • 90 Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc Natl Acad Sci U S A 2004; 101 (18) 7129-7134
  • 91 Silva MS, Prescott M, Campbell RE. Ontogeny and reversal of brain circuit abnormalities in a preclinical model of PCOS. JCI Insight 2018; 3 (07) 99405
  • 92 Eagleson CA, Gingrich MB, Pastor CL. et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab 2000; 85 (11) 4047-4052
  • 93 Blank SK, McCartney CR, Chhabra S. et al. Modulation of gonadotropin-releasing hormone pulse generator sensitivity to progesterone inhibition in hyperandrogenic adolescent girls – implications for regulation of pubertal maturation. J Clin Endocrinol Metab 2009; 94 (07) 2360-2366
  • 94 Berga SL. Polycystic ovary syndrome: a model of combinatorial endocrinology?. J Clin Endocrinol Metab 2009; 94 (07) 2250-2251
  • 95 Matheson E, Bain J. Hirsutism in women. Am Fam Physician 2019; 100 (03) 168-175
  • 96 Reinehr T, de Sousa G, Roth CL, Andler W. Androgens before and after weight loss in obese children. J Clin Endocrinol Metab 2005; 90 (10) 5588-5595
  • 97 McCartney CR, Prendergast KA, Chhabra S. et al. The association of obesity and hyperandrogenemia during the pubertal transition in girls: obesity as a potential factor in the genesis of postpubertal hyperandrogenism. J Clin Endocrinol Metab 2006; 91 (05) 1714-1722
  • 98 Lass N, Kleber M, Winkel K, Wunsch R, Reinehr T. Effect of lifestyle intervention on features of polycystic ovarian syndrome, metabolic syndrome, and intima-media thickness in obese adolescent girls. J Clin Endocrinol Metab 2011; 96 (11) 3533-3540
  • 99 Peña AS, Witchel SF, Hoeger KM. et al. Adolescent polycystic ovary syndrome according to the international evidence-based guideline. BMC Med 2020; 18 (01) 72