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Abstract Background Artificial intelligence (AI) has been successfully applied in numerous
scientific domains. In biomedicine, AI has already shown tremendous potential, e.g., in
the interpretation of next-generation sequencing data and in the design of clinical
decision support systems.
Objectives However, training an AI model on sensitive data raises concerns about the
privacy of individual participants. For example, summary statistics of a genome-wide
association study can be used to determine the presence or absence of an individual in a
given dataset. This considerable privacy risk has led to restrictions in accessing genomic
and other biomedical data, which is detrimental for collaborative research and impedes
scientific progress. Hence, there has been a substantial effort to develop AI methods
that can learn from sensitive data while protecting individuals’ privacy.
Method This paper provides a structured overview of recent advances in privacy-
preserving AI techniques in biomedicine. It places the most important state-of-the-art
approaches within a unified taxonomy and discusses their strengths, limitations, and
open problems.
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Introduction

Artificial intelligence (AI) strives to emulate the human mind
and to solve complex tasks by learning from available data. For
many complex tasks, AI already surpasses humans in terms of
accuracy, speed, and cost. Recently, the rapid adoption of AI
and its subfields, specifically machine learning and deep
learning, has led to substantial progress in applications such
as autonomous driving,1 text translation,2 and voice assis-
tance.3 At the same time, AI is becoming essential in biomedi-
cine,wherebigdata inhealth care necessitates techniques that
help scientists to gain understanding from it.4

Success stories such as acquiring the compressed repre-
sentation of drug-like molecules,5 modeling the hierarchical
structure and function of a cell6 and translating magnetic
resonance images to computed tomography7 using deep
learning models illustrate the remarkable performance of
these AI approaches. AI has not only achieved remarkable
success in analyzing genomic and biomedical data,8–18 but
has also surpassed humans in applications such as sepsis
prediction,19 malignancy detection in mammography,20 and
mitosis detection in breast cancer.21

Despite these AI-fueled advancements, important privacy
concerns have been raised regarding the individuals who
contribute to the datasets. While taking care of the confi-
dentiality of sensitive biological data is crucial,22 several
studies showed that AI techniques often do notmaintain data
privacy.23–26 For example, attacks known as membership
inference can be used to infer an individual’s membership by
querying over the dataset27 or the trained model,23 or by
having access to certain statistics about the dataset.28–30

Homer et al28 showed that under some assumptions, an
adversary (an attacker who attempts to invade data privacy)
can use the statistics published as the result of genome-wide
association studies (GWAS) to find out if an individual was a
part of the study. Another example of this kind of attack was
demonstrated by attacks onGenomics Beacons,27,31 inwhich
an adversary could determine the presence of an individual
in the dataset by simply querying the presence of a particular
allele. Moreover, the attacker could identify the relatives of
those individuals and obtain sensitive disease informa-
tion.27,32 Besides targeting the training dataset, an adversary
mayattack a fully trainedAImodel to extract individual-level
membership by training an adversarial inference model that
learns the behavior of the target model.23

As a result of the aforementioned studies, health research
centers such as the National Institutes of Health (NIH) as well
as hospitals have restricted access to the pseudonymized

data.22,33,34 Furthermore, data privacy laws such as those
enforced by the Health Insurance Portability and Accountabil-
ity Act (HIPAA), and the Family Educational Rights and Privacy
Act (FERPA) in theU.S. aswell as theEUGeneralDataProtection
Regulation (GDPR) restrict the use of sensitive data.35,36

Consequently, getting access to these datasets requires a
lengthy approval process, which significantly impedes collab-
orative research. Therefore, both industry and academia ur-
gently need to apply privacy-preserving techniques to respect
individual privacy and comply with these laws.

This paper provides a systematic overview over various
recently proposed privacy-preserving AI techniques in bio-
medicine, which facilitate the collaboration between health
research institutes. Several efforts exist to tackle the privacy
concerns in several domains, some of which have been
examined in a couple of surveys.37–39 Aziz et al37 investigat-
ed previous studies which employed differential privacy and
cryptographic techniques for human genomic data. Kaissis
et al39 briefly reviewed federated learning, differential pri-
vacy and cryptographic techniques applied in medical imag-
ing. Xu et al38 surveyed general solutions to challenges in
federated learning including communication efficiency, op-
timization, as well as privacy and discussed possible appli-
cations including a few examples in health care. Compared
with Aziz et al and Kaissis et al,37,39 this paper covers a
broader set of privacy preserving techniques including fed-
erated learning and hybrid approaches. In contrast with Xu
et al38we additionally discuss cryptographic techniques and
differential privacy approaches and their applications in
biomedicine. Moreover, this survey covers a wider range of
studies that employed different privacy-preserving techni-
ques in genomics and biomedicine and compares the
approaches using different criteria such as privacy, accuracy,
and efficiency. It is notable that there are some hardware-
based privacy-preserving approaches such as Intel Software
Guard Extensions40–42 and AMD memory encryption,43

which allow for secure computation via secure hardware
which are beyond the scope of this study.

The presented approaches are divided into four catego-
ries: cryptographic techniques, differential privacy, federat-
ed learning, and hybrid approaches. First, we describe how
cryptographic techniques—in particular, homomorphic en-
cryption (HE) and secure multiparty computation (SMPC)—
ensure secrecy of sensitive data by carrying out computa-
tions on encrypted biological data. Next, we illustrate the
differential privacy approach and its capability in quantify-
ing individuals’ privacy in published summary statistics of,
for instance, GWASdata and deep learningmodels trained on

Conclusion As the most promising direction, we suggest combining federated
machine learning as a more scalable approach with other additional privacy-preserving
techniques. This would allow tomerge the advantages to provide privacy guarantees in
a distributed way for biomedical applications. Nonetheless, more research is necessary
as hybrid approaches pose new challenges such as additional network or computation
overhead.
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clinical data. Then,we elaborate on federated learning,which
allows health institutes to train AIs locally and to share only
selected parameters without sensitive data with a coordina-
tor, who aggregates them and builds a global model. Follow-
ing that, we discuss hybrid approaches which enhance data
privacy by combining federated learning with other privacy-
preserving techniques. We elaborate on the strengths and
drawbacks of each approach as well as its applications in
biomedicine. More importantly, we provide a comparison
among the approaches with respect to different criteria such
as computational and communication efficiency, accuracy,
and privacy. Finally, we discuss themost realistic approaches
from a practical viewpoint and provide a list of open prob-
lems and challenges that remain for the adoption of these
techniques in real-world biomedical applications.

Our review of privacy-preserving AI techniques in bio-
medicine yields the following main insights: First, crypto-
graphic techniques such as HE and SMPC, which follow the
paradigm of “bring data to computation“, are not computa-
tionally efficient and do not scale well to large biomedical
datasets. Second, federated learning follows the paradigm
of “bring computation to data“ is a more scalable
approach. However, its network communication efficiency
is still an open problem and it does not provide privacy
guarantees. Third, hybrid approaches that combine crypto-
graphic techniques or differential privacy with federated

learning are the most promising privacy-preserving AI tech-
niques for biomedical applications, because they promise to
combine the scalability of federated learning with the priva-
cy guarantees of cryptographic techniques or differential
privacy.

Cryptographic Techniques

In biomedicine and GWAS in particular, cryptographic tech-
niques have been used to collaboratively compute result
statistics while preserving data privacy.40,44–56 These cryp-
tographic approaches are based on HE57–59 or SMPC.60 There
are different HE-based techniques such as partially HE (PHE)
58 and fully HE (FHE).57 PHE allows either addition or
multiplication operations to be performed on the encrypted
data while using FHE both addition and multiplication
operations can be applied. All HE-based approaches share
three steps (►Fig. 1A):

1. Participants (e.g., hospitals or medical centers) encrypt
their private data and send the encrypted data to a
computing party.

2. The computing party calculates the statistics over the
encrypted data and shares the statistics (which are
encrypted) with the participants.

3. The participants access the results by decrypting them.

Fig. 1 Different privacy-preserving AI techniques: (A) homomorphic encryption, where the participants encrypt the private data and share it with
a computing party, which computes the aggregated results over the encrypted data from the participants; (B) secure multiparty computation in
which each participant shares a separate, different secret with each computing party; the computing parties calculate the intermediate results,
secretly share them with each other, and aggregate all intermediate results to obtain the final results; (C) differential privacy, which ensures the
models trained on datasets including and excluding a specific individual look statistically indistinguishable to the adversary; (D) federated
learning, where each participant downloads the global model from the server, computes the local model given its private data and the global
model, and finally sends its local model to the server for aggregation and for updating the global model. (A). Homomorphic encryption. (B).
Secure multiparty computation. (C). Differential privacy. (D). Federated learning.
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In SMPC, there are multiple participants as well as a
couple of computing parties which perform computations
on secret shares from the participants. Given M participants
and N computing parties, SMPC-based approaches follow
three steps (►Fig. 1B):

1. Each participant sends a separate and different secret to
each of the N computing parties.

2. Each computing party computes the intermediate results
on the M secret shares from the participants and shares
the intermediate results with the other N�1 computing
parties.

3. Each computing party aggregates the intermediate results
from all computing parties including itself to calculate the
final (global) results. In the end, thefinal results computed
by all computing parties are the same and can be shared
by the participants.

To clarify the concepts of secret sharing61 and multiparty
computation, consider a scenario with two participants P1
and P2 and two computing parties C1 and C2.46 P1 and P2
possess the private data X and Y, respectively. The aim is to
compute Xþ Y, where neither P1 nor P2 reveals its data to the
computing parties. To this end, P1 and P2 generate random
numbers RX and RY, respectively; P1 reveals RX to C1 and
(X�RX) to C2; likewise, P2 shares RY with C1 and Y�RY with
C2; RX, RY, (X�RX) and (Y�RY) are secret shares. C1 computes
(RXþRY) and sends it to C2 and C2 calculates (X�RX)þ (Y�
RY) and reveals it to C1. Both C1 and C2 add the result they
computed to the result each obtained from the other com-
puting party. The sum is in fact (Xþ Y), which can be shared
with P1 and P2.

Notice that to preserve the data privacy, the computing
parties C1 and C2 must be non-colluding. That is, C1 must not
send RX and RY to C2 and C2 must not share (X�RX) and
(Y�RY) with C1. Otherwise, the computing parties can
compute X and Y, revealing the participants’ data. In general,
in an SMPC with N computing parties, data privacy is
protected as long as most N�1 computing parties collude
with each other. The larger theN, the stronger the privacy but
higher the communication overhead and processing time.
Another point is that, in addition to secret sharing, there are
other transfer protocols in SMPC such as oblivious transfer62

and garbled circuit63 which is a two-party computation
protocol in which each of the parties hold its private input
and they jointly learn the output function describing the
relation between their private inputs. Moreover, threshold
cryptography combines a secret sharing scheme with cryp-
tography to secretly share a key across distributed parties
such that multiple parties (more than a threshold) must
coordinate to encrypt/decrypt a message.59,64 That is,
threshold cryptography can be considered as the combina-
tion of the HE and SMPC methods.

Most studies use HE or SMPC to develop secure, privacy-
aware algorithms applicable to GWAS data. Kim and Lauter47

and Lu et al49 implemented a secure2 test and Lauter et al48

developed privacy-preserving versions of common statisti-
cal tests in GWAS, such as the Pearson goodness of fit test,
tests for linkage disequilibrium, and the Cochran Armitage

trend test using HE. Kim et al65 and Morshed et al66 pre-
sented HE-based secure logistic and linear regression algo-
rithms formedical data, respectively. Zhang et al,53 Constable
et al,52 and Kamm et al51 developed a SMPC-based secure χ2

test. Shi et al67 implemented a privacy-preserving logistic
regression and Bloom68 proposed a secure linear regression
based on SMPC for GWAS data. Cho et al44 introduced a
SMPC-based framework to facilitate quality control and
population stratification correction for large-scale GWAS
and argued that their framework is scalable to one million
individuals and half million single nucleotide polymor-
phisms (SNPs).

There are also other types of encryption techniques such
as somewhat homomorphic encryption (SWHE),57which are
employed to address privacy issues in genomic applications
such as outsourcing genomic data computation to the cloud,
and are not themain focus of this review. Themain drawback
of SWHE is that the number of successive addition and
multiplication operations it can perform on the data are
limited.47 For more details, we refer to the comprehensive
review by Mittos et al.69

Despite the promises of HE/SMPC-based privacy-preserv-
ing algorithms (►Table 1), the road for the wide adoption of
HE/SMPC-based algorithms in genomics and biomedicine is
long.70 The major limitations of HE are few supported
operations and computational overhead.71 HE supports
only addition and multiplication operations, and as a result,
developing complex AI models with non-linear operations
such as deep neural networks (DNNs) using HE is very
challenging. Moreover, HE incurs remarkable computational
overhead since it performs operations on encrypted data.
Although SMPC is more efficient than HE from a computa-
tional perspective, it still suffers from high computational
overhead,72which comes fromprocessing secret shares from
a large number of participants or large amount of data by a
few computing parties.

Differential Privacy

One of the state-of-the-art concepts for eliminating and
quantifying the chance of information leakage is differential
privacy.73–75 Differential privacy is a mathematical model
that encapsulates the idea of injecting enough randomness
or noise to sensitive data to camouflage the contribution of
each single individual. This is achieved by inserting uncer-
tainty into the learning process so that even a strong adver-
sary with arbitrary auxiliary information about the data will
still be uncertain in identifying any of the individuals in the
dataset. This has become standard in data protection and has
been effectively deployed by Google76 and Apple77 as well as
agencies such as the United States Census Bureau. Further-
more, it has drawn the attention of researchers in privacy-
sensitive fields such as biomedicine and health care78–93.

Differential privacy ensures that the model we train does
not overfit the sensitive data of a particular user. The model
trained on a dataset containing information of a specific
individual should be statistically indistinguishable from a
model trained without the individual (►Fig. 1C). As an
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example, assume that a patient would like to give consent to
his/her doctor to include his/her personal health record in a
biomedical dataset to study the coordination between age
and cardiovascular disease. Differential privacy provides a
mathematical guarantee which captures the privacy risk
associated with the patient’s participation in the study and
explains to what extent the analyst or the potential adver-
sary can learn about that particular individual in the dataset.
Note that, differential privacy is typically employed for
centralized datasets, where the output of the algorithm is
perturbed with noise. However, SMPC and HE are leveraged
for use cases where data are distributed across multiple

clients, and carry out computation over the encrypted data or
secret shares from the data of the clients. Formally, a
randomized algorithm (an algorithm that has randomness
in its logic and whose output can vary even on a fixed input)
A: Dn ! Y is (ε, d)-differentially private if for all subsets y � Y
and for all adjacent datasets D, D′ ∈� Dn that differ in at most
one record, then the following inequality holds:

Pr[A(D) ∈� y] � eε Pr[A(DJ) ∈� y]þ d

Here, ε and d are privacy loss parameters where lower
values imply stronger privacy guarantees. d is an exceedingly

Table 1 Literature for cryptographic techniques and differential privacy in biomedicine

Authors Year Technique Model Application

Kim and Lauter47 2015 HE χ2 statistics
Minor allele frequency Hamming
Distance
Edit distance

Genetic associations
DNA comparison

Lu et al49 2015 HE χ2 statistics
D′ measure

Genetic associations

Lauter et al48 2014 HE D′ and r2 measure
Pearson goodness-of-fit
expectation maximization
Cochran-Armitage

Genetic associations

Kim et al65 2018 HE Logistic regression Medical decision-making

Morshed et al66 2018 HE Linear regression Medical decision-making

Kamm et al51 2013 SMPC χ2 statistics Genetic associations

Constable et al52

Zhang et al53
2015
2015

SMPC χ2 statistics
Minor allele frequency

Genetic associations

Shi et al67 2016 SMPC Logistic regression Genetic associations

Bloom68 2019 SMPC Linear regression Genetic associations

Cho et al44 2018 SMPC Quality Control
Population stratification

Genetic associations

Johnson and Shmatikov78 2013 DP Distance-score mechanism
p-value and χ2 statistics

Querying genomic
databases

Cho et al95 2020 DP α-geometric mechanism Querying biomedical
databases

Aziz et al79 2017 DP Eliminating random positions
Biased random response

Querying genomic databases

Han et al80

Yu et al81
2019
2014

DP Logistic regression Genetic associations

Honkela et al82 2018 DP Bayesian linear regression Drug sensitivity prediction

Simmons et al83 2016 DP EIGENSTRAT
Linear mixed model

Genetic associations

Simmons and Berger84 2016 DP Nearest neighbor optimization Genetic associations

Fienberg et al85

Uhlerop et al86

Yu and Ji87

Wang et al88

2011
2013
2014
2014

DP Statistics such as p-value,
χ2 and contingency table

Genetic associations

Abay et al97 2018 DP Deep autoencoder Generating artificial biomedical data

Beaulieu et al98 2019 DP GAN Simulating SPRINT trial

Jordon et al99 2018 DP GAN Generating artificial biomedical data

Abbreviations: DP, differential privacy; HE, homomorphic encryption, SMPC, secure multiparty computation.
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small value (e.g., 10�5) indicating the probability of an
uncontrolled breach, where the algorithm produces a specif-
ic output only in the presence of a specific individual and not
otherwise. ε represents the worst case privacy breach in the
absence of any such rare breach. If you assume d¼0, youwill
have a pure (ε)-differentially private algorithm, while if you
consider d> 0 to approximate the case in which pure
differential privacy is broken, you will have an approximate
(ε, d)-differentially private algorithm.

Two important properties of differential privacy are com-
posability94 and resilience to post-processing. Composability
means that combining multiple differentially private algo-
rithms yields another differentially private algorithm. More
precisely, if you combine k (ε, d)-differentially private algo-
rithms, the composed algorithm is at least (kε, kd)-differen-
tially private. Differential privacy also assures the resistance
to post-processing theorem which states passing the output
of a (ε, d)-differentially private algorithm to any arbitrary
randomized algorithmwill still uphold the (ε, d)-differential
privacy guarantee.

The community efforts to ensure the privacy of sensitive
genomic and biomedical data using differential privacy can
be grouped into four categories according to the problem
they address (►Table 1):

1. Approaches to querying biomedical and genomics
databases.78,79,93,95

2. Statistical and AI modeling techniques in genomics and
biomedicine.80–84,92,96

3. Data release, i.e., releasing summary statistics of a GWAS
such as p-values and χ2 contingency tables.85–88

4. Training privacy-preserving generative models.97–99

Studies in the first category proposed solutions to reduce
the privacy risks of genomics databases such as GWAS
databases and genomics beacon service.100 The Beacon
Network31 is an online web service developed by the Global
Alliance for Genomics and Health (GA4GH) through which
the users can query the data provided by owners or research
institutes, ask about the presence of a genetic variant in the
database, and get a YES/NO as response. Studies have shown
that an attacker can detect membership in the Beacon or
GWAS by querying these databases multiple times and
asking different questions.27,101–103 Very recently, Cho
et al95 proposed a theoretical differential privacymechanism
tomaximize the utility of count query in biomedical systems
while guaranteeing data privacy. Johnson and Shmatikov78

developed a differentially private query-answering frame-
work. With this framework an analyst can retrieve statistical
properties such as the correlation between SNPs and get an
almost accurate answer while the GWAS dataset is protected
against privacy risks. In another study, Aziz et al79 proposed
two algorithms to make the Beacon’s response inaccurate by
controlling a bias variable. These algorithms decide when to
answer the query correctly/incorrectly according to specific
conditions in the bias variable so that it gets harder for the
attacker to succeed.

Some of the efforts in the second category addressed the
privacy concerns in GWAS by introducing differentially

private logistic regression to identify associations between
SNPs and diseases80 or associations among multiple SNPs.81

Honkela et al82 improve drug sensitivity prediction by effec-
tively employing differential privacy for Bayesian linear
regression. Moreover, Simmons et al83 presented a differen-
tially private EIGENSTRAT (PrivSTRAT)104 and linear mixed
model (PrivLMM)105 to correct for population stratification.
In another paper, Simmons et al84 tackled the problem of
finding significant SNPs by modeling it as an optimization
problem. Solving this problem provides a differentially pri-
vate estimate of the neighbor distance for all SNPs so that
high scoring SNPs can be found.

The third category focused on releasing summary statis-
tics such as p-values, χ2 contingency tables, and minor allele
frequencies in a differentially private fashion. The common
approach in these studies is to add Laplacian noise to the
true value of the statistics, so that sharing the perturbed
statistics preserves privacy of the individuals. They vary in
the sensitivity of the algorithm (that is, the maximum
change on the output of an algorithm in presence or
absence of a specific data point) and hence require different
injected noise.85,86,88

The fourth category proposed novel privacy-protecting
methods to generate synthetic health care data leveraging
differentially private generative models (►Fig. 2). Deep
generative models, such as generative adversarial networks
(GANs),106 can be trained on sensitive genomics and bio-
medical data to capture its properties and generate artificial
data with similar characteristics as the original data.

Abay et al97 presented a differentially private deep gener-
ativemodel, DP-SYN, a generative autoencoder that splits the
input data intomultiple partitions, then learns and simulates
the representation of each partition while maintaining the
privacy of input data. They assessed the performance of DP-
SYN on sensitive datasets of breast cancer and diabetes.
Beaulieu et al98 trained an auxiliary classifier GAN (AC-
GAN) in a differentially private manner to simulate the
participants of the SPRINT trial (Systolic Blood Pressure
Trial), so that the clinical data can be sharedwhile respecting
participants’ privacy. In another approach, Jordon et al99

introduced a differentially private GAN, PATE-GAN, and
evaluated the quality of synthetic data on Meta-Analysis
Global Group in Chronic Heart Failure (MAGGIC) and the
United Network for Organ Transplantation (UNOS) datasets.
Despite the aforementioned achievements in adopting dif-
ferential privacy in the field, several challenges remain to be
addressed. Although differential privacy involves less net-
work communication, memory usage, and time complexity
compared with cryptographic techniques, it still struggles
with giving highly accurate results within a reasonable
privacy budget, namely, intended ε and d, on large-scale
datasets such as genomics datasets.37,107 In more detail,
since genomic datasets are huge, the sensitivity of the
applied algorithms on these datasets is large. Hence, the
amount of distortion required for anonymization increases
significantly, sometimes to the extent that the results will
not be meaningful anymore.108 Therefore, to make differen-
tial privacy more practical in the field, balancing a tradeoff
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between privacy and utility demands more attention than it
has received88,90–92.

Federated Learning

Federated learning109 is a type of distributed learning where
multiple clients (e.g., hospitals) collaboratively learn amodel
under the coordination of a central server while preserving
the privacy of their data. Instead of sharing its private data
with the server or the other clients, each client extracts
knowledge (that is, model parameters) from its data and
transfers it to the server for aggregation (►Fig. 1D).

Federated learning is an iterative process in which each
iteration consists of the following steps110:

1. The server chooses a set of clients to participate in the
current iteration of the model.

2. The selected clients obtain the current model from the
server.

3. Each selected client computes the local parameters using
the current model and its private data (e.g., runs gradient
descent algorithm initialized by the current model on its
local data to obtain the local gradient updates).

4. The server collects the local parameters from the select-
ed clients and aggregates them to update the current
model.

The data of the clients can be considered as a table,
where rows represent samples (e.g., individuals) and col-
umns represent features or labels (e.g., age, case vs. control).
We refer to the set of samples, features, and labels of the
data as sample space, feature space, and label space, respec-
tively. Federated learning can be categorized into three
types based on the distribution characteristics of the cli-
ents’ data:

• Horizontal (sample-based) federated learning111: Data
from different clients shares similar feature space but

is very different in sample space. As an example,
consider two hospitals in two different cities which
collected similar information such as age, gender, and
blood pressure about the individuals. In this case, the
feature spaces are similar; but because the individuals
who participated in the hospitals’ data collections are
from different cities, their intersection is most proba-
bly very small, and the sample spaces are hence very
different.

• Vertical (feature-based) federated learning111: Clients’data
are similar in sample space but very different in feature
space. For example, two hospitals with different expertise
in the same city might collect different information
(different feature space) from almost the same individuals
(similar sample space).

• Hybrid federated learning: Both feature space and sample
space are different in the data from the clients. For
example, consider a medical center with expertise in
brain image analysis located in New York and a research
center with expertise in protein research based in Berlin.
Their data are completely different (image vs. protein
data) and disjoint groups of individuals participated in
the data collection of each center.

To illustrate the concept of federated learning, consider a
scenario with two hospitals A and B. A and B possess lists X
and Y, containing the age of their cancer patients, respec-
tively. A simple federated mean algorithm to compute the
average age of cancer patients in both hospitals without
revealing the real values of X and Yworks as follows: For the
sake of brevity, we assume that both hospitals are selected in
the first step and that the current global model parameters
(average age) in the second step are zero (see federated
learning steps).

• Hospital A computes the average age (MX) and number of
its cancer patients (NX). Hospital B does the same,

Fig. 2 Differentially private deep generative models: The sensitive data holder (e.g., health institutes) train a differentially private generative
model locally and share just the trained data generator with the outside world (e.g., researchers). The shared data generator can then be used to
produce artificial data with the same characteristics as the sensitive data.
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resulting inMY,NY. Here, X and Yare private datawhileMX,
NX, MY, NY are the parameters extracted from the private
data.

• The server obtains the values of local model parameters
from the hospitals and computes the global mean as
follows:

The emerging demand for federated learning gave rise to a
wealth of both simulation112,113 and production-orient-
ed114,115 open source frameworks. Additionally, there are
AI platforms whose goal is to apply federated learning to
real-world health care settings116,117. In the following, we
survey studies on federated AI techniques in biomedicine
and health care (►Table 2). Recent studies in this regard
mainly focused on horizontal federated learning and there
are a few vertical or hybrid federated learning algorithms
applicable to genomic and biomedical data.

Several studies provided solutions for the lackof sufficient
data due to the privacy challenges in the medical imaging
domain.117–123 For instance, Sheller et al developed a super-
vised DNN in a federated way for semantic segmentation of
brain gliomas from magnetic resonance imaging scans.118

Changet al123 simulated a distributedDNN inwhichmultiple

participants collaboratively update model weights using
training heuristics such as single weight transfer and cyclical
weight transfer (CWT). They evaluated this distributed mod-
el using image classification tasks onmedical image datasets
such as mammography and retinal fundus image collections,
which were evenly distributed among the participants.
Balachandar et al122 optimized CWT for cases where the
datasets are unevenly distributed across participants. They
assessed their optimization methods on simulated diabetic
retinopathy detection and chest radiograph classification.

Federated Cox regression, linear regression, logistic re-
gression as well as Chi-square test have been developed for
sensitive biomedical data that is vertically or horizontally
distributed.124–129 VERTICOX124 is a vertical federated Cox
regression model for survival analysis, which employs the
alternating direction method of multiplier (ADMM) frame-
work130 and is evaluated on acquired immunodeficiency
syndrome (AIDS) and breast cancer survival datasets. Simi-
larly, WebDISCO125 presents a federated Cox regression
model but for horizontally distributed survival data. The
grid binary logistic regression (GLORE)126 and the expecta-
tion propagation logistic regression (EXPLORER)127 imple-
mented a horizontally federated logistic regression for
medical data.

Unlike GLORE, EXPLORER supports asynchronous com-
munication and online learning functionality so that the
system can continue collaborating in case a participant is

Table 2 Literature for FL and hybrid approaches in biomedicine

Authors Year Technique Model Application

Sheller et al118 2018 FL DNN Medical image segmentation

Chang et al123

Balachandar et al122
2018
2020

FL Single weight transfer
Cyclic weight transfer

Medical image segmentation

Nasirigerdeh et al129 2020 FL Linear regression
Logistic regression
χ2 statistics

Genetic associations

Wu et al126

Wang et al127

Li et al128

2012
2013
2016

FL Logistic regression Genetic associations

Dai et al124

Lu et al125
2020̀
2015

FL Cox regression Survival analysis

Brisimi et al132 2018 FL Support vector machines Classifying electronic health records

Huang et al133 2018 FL Adaptive boosting ensemble Classifying medical data

Liu et al134 2018 FL Autonomous deep learning Classifying medical data

Chen et al135 2019 FL Transfer learning Training wearable health care devices

Li et al150 2020 FLþDP DNN Medical image segmentation

Li et al149 2019 FLþDP Domain adoption Medical image pattern recognition

Choudhury et al159 2019 FLþDP Neural network
Support vector machine
Logistic regression

Classifying electronic health records

Constable et al52 2015 FLþ SMPC Statistical analysis
(e.g., χ2 statistics, ...)

Genetic associations

Lee et al158 2019 FLþHE Context-specific hashing Learning patient similarity

Kim et al156 2019 FLþDPþHE Logistic regression Classifying medical data

Abbreviations: DP, differential privacy; FL, federated learning; HE, homomorphic encryption; SMPC, secure multiparty computation.
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absent or if communication is interrupted. Li et al presented
VERTIGO,128 a vertical grid logistic regression algorithm
designed for vertically distributed biological datasets such
as breast cancer genome and myocardial infarction data.
Nasirigerdeh et al129 developed a horizontally federated
tool set for GWAS, called sPLINK, which supports Chi-square
test, linear regression, and logistic regression. Notably,
federated results from sPLINK on distributed datasets are
the same as those from aggregated analysis conducted with
PLINK.131 Moreover, they showed that sPLINK is robust
against heterogeneous (imbalanced) data distributions
across clients and does not lose its accuracy in such
scenarios.

There are also studies that combine federated learning
with other traditional AI modeling techniques such as en-
semble learning, support vector machines (SVMs), and prin-
cipal component analysis (PCA).132–136 Brisimi et al132

presented a federated soft-margin support vector machine
(sSVM) for distributed electronic health records. Huang
et al133 introduced LoAdaBoost, a federated adaptive boost-
ing method for learning biomedical data such as intensive
care unit data from distinct hospitals137 while Liu et al134

trained a federated autonomous deep learner to this end.
There have also been a couple of attempts at incorporating
federated learning into multitask learning and transfer
learning in general.138–140 However, to the best of our
knowledge, FedHealth135 is the only federated transfer learn-
ing framework specifically designed for health care applica-
tions. It enables users to train personalized models for their
wearable health care devices by aggregating the data from
different organizations without compromising privacy.

One of the major challenges for adopting federated learn-
ing in large scale genomics and biomedical applications is the
significant network communication overhead, especially for
complex AI models such as DNNs that contain millions of
model parameters and require thousands of iterations to
converge. A rich body of literature exists to tackle this
challenge, known as communication-efficient federated
learning.141–144

Another challenge in federated learning is the possible
accuracy loss from the aggregation process if the data
distribution across the clients is heterogeneous (i.e., not
independent and identically distributed [IID]). More specifi-
cally, federated learning can deal with non-IID data while
preserving the model accuracy if the learning model is
simple such as ordinary least squares linear regression
(sPLINK129). However, when it comes to learning complex
models such as DNNs, the global model might not converge
on non-IID data across the clients. Zhao et al145 showed that
simple averaging of the model parameters in the server
significantly diminishes the accuracy of a convolutional
neural network model in highly skewed non-IID settings.
Developing the aggregation strategies which are robust
against non-IID scenarios is still an open and interesting
problem in federated learning.

Finally, federated learning is based on the assumption that
the centralized server is honest and not compromised, which
is not necessarily the case in real applications. To relax this

assumption, differential privacy or cryptographic techniques
can be leveraged in federated learning, which is covered in
the next section. For further reading on further directions of
federated learning in general, we refer the reader to compre-
hensive surveys.110,146,147

Hybrid Privacy-Preserving Techniques

The hybrid techniques combine federated learning with the
other paradigms (cryptographic techniques and differential
privacy) to enhance privacy or provide privacy guarantees
(►Table 2). Federated learning preserves privacy to some
extent because it does not require the health institutes to
share the patients’ datawith the central server. However, the
model parameters that participants share with the server
might be abused to reveal the underlying private data if the
coordinator is compromised.148 To handle this issue, the
participants can leverage differential privacy and add noise
to the model parameters before sending them to the server
(FLþDP)149–153 or they employ HE (FLþHE),55,154,155 SMPC
(FLþ SMPC) or both DP and HE (FLþDPþHE)103,156,157 to
securely share the parameters with the server.51,158

In the genomic and biomedical field, several hybrid
approaches have been presented recently. Li et al149 pre-
sented a federated deep learning framework for magnetic
resonance brain image segmentation inwhich the client side
provides differential privacy guarantees on selecting and
sharing the local gradient weights with the server for imbal-
anced data. A recent study150 extracted neural patterns from
brain functional magnetic resonance images by developing a
privacy-preserving pipeline that analyzes image data of
patients having different psychiatric disorders using feder-
ated domain adaptation methods. Choudhury et al159 devel-
oped a federated differential privacy mechanism for
gradient-based classification on electronic health records.

There are also some studies that incorporate federate
learning with cryptographic techniques. For instance, Con-
stable et al52 implemented a privacy-protecting structure
for federated statistical analysis such as χ2 statistics on
GWAS while maintaining privacy using SMPC. In a slightly
different approach, Lee et al158 presented a privacy-pre-
serving platform for learning patient similarity in multiple
hospitals using a context-specific hashing approach which
employs HE to limit the privacy leakage. Moreover, Kim
et al156 presented a privacy-preserving federated logistic
regression algorithm for horizontally distributed diabetes
and intensive care unit datasets. In this approach, the
logistic regression ensures privacy by making the aggregat-
ed weights differentially private and encrypting the local
weights using HE.

Incorporating HE, SMPC, and differential privacy into
federated learning brings about enhanced privacy but it
combines the limitations of the approaches, too. FLþHE
puts much more computational overhead on the server,
since it requires to perform aggregation on the encrypted
model parameters from the clients. The network communi-
cation overhead is exacerbated in FLþ SMPC, because clients
need to securely share the model parameters with multiple
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computing parties instead of one. FLþDP might result in
inaccurate models because of adding noise to the model
parameters in the clients.

Comparison

We compare the privacy-preserving techniques (HE, SMPC,
differential privacy, federated learning, and the hybrid
approaches) using various performance and privacy criteria
such as computational/communication efficiency, accuracy,
privacy guarantee, and exchanging sensitive traffic through
network and privacy of exchanged traffic (►Fig. 3). We
employ a generic ranking (lowest¼1 to highest¼6)37 for
all comparison criteria except for privacy guarantee and
exchanging sensitive traffic through network, which are bina-
ry criteria. This comparison is made under the assumption of
applying a complex model (e.g., DNN with a huge number of
model parameters) on a large sensitive genomics dataset
distributed across dozens of clients in IID configuration.
Additionally, there are a few computing parties in SMPC
(practical configuration).

Computational efficiency is an indicator of the extra
computational overhead an approach incurs to preserve
privacy. According to ►Fig. 3, federated learning is best
from this perspective because it follows the paradigm of
“bringing computation to data“, distributing computational
overhead among the clients. HE and SMPC are based on the
paradigm of moving data to computation. In HE, encryption
of the whole private data in the clients and carrying out
computation on encrypted data by the computing party
causes a huge amount of overhead. In SMPC, a couple of
computing parties process the secret shares from dozens of
clients, incurring considerable computational overhead.
Among the hybrid approaches, FLþDP has the best compu-
tational efficiency given the lower overhead of the two
approaches whereas FLþHE has the highest overhead be-
cause the aggregation process on encrypted parameters is
computationally expensive.

Network communication efficiency indicates how effi-
cient an approach utilizes the network bandwidth. The less
data traffic is exchanged in the network, the more commu-

nication efficient is the approach. Federated learning is the
least efficient approach from the communication aspect
since exchanging a large number of model parameter values
between the clients and the server generates a huge amount
of network traffic. Notice that network bandwidth usage of
federated learning is independent of the clients’data because
federated learning does not move data to computation but
depends on the model complexity (i.e., the number of model
parameters). The next approach in this regard is SMPC,
where not only each participant sends a large traffic (almost
as big as its data) to each computing party but also each
computing party exchanges intermediate results (which
might be large) with the other computing parties through
the network. Although recent research has shown that there
is still potential for reducing the communication overhead in
SMPC,160 many limitations cannot be fully overcome. The
network overhead of HE comes from sharing the encrypted
data of the clients (assumed to be almost as big as the data
itself) with the computing party, which is small compared
with network traffic generated by federated learning and
SMPC. The best approach is differential privacy with no
network overhead. Accordingly, FLþDP and FLþ SMPC are
the best and worst among the hybrid approaches from a
communication efficiency viewpoint, respectively.

Accuracy of themodel in a privacy-preserving approach is
a crucial factor in whether to adopt the approach. In the
assumed configuration, SMPC and federated learning are the
most accurate approaches incurring little accuracy loss in the
final model. Next is differential privacy where the added
noise can considerably affect the model accuracy. The worst
approach is HE whose accuracy loss is due to approximating
the non-linear operations using addition and multiplication
(e.g., least squares approximation65). In the hybrid
approaches, FLþ SMPC is the best and FLþDP is the worst
considering the accuracy of SMPC and differential privacy
approaches.

The rest of the comparison measures are privacy related.
The traffic transferred from the clients (participants) to the
server (computing parties) is highly sensitive if it carries the
private data of the clients. HE and SMPC send the encrypted
form of the clients’ private data to the server. Federated

Fig. 3 Comparison radar plots for all (A) and each of (B–H) the privacy preserving approaches including homomorphic encryption (HE), secure
multiparty computation (SMPC), differential privacy (DP), federated learning (FL) and hybrid techniques (FLþDP, FLþHE and FLþ SMPC). (A) All.
(B) HE. (C) SMPC. (D) DP. (E) FL. (F) FLþDP. (G) FLþHE. (H) FLþ SMPC.
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learning and hybrid approaches share only themodel param-
eters with the server. InHE, if the server has thekey to decrypt
the traffic fromtheclients, thewholeprivatedataof the clients
will be revealed. The same holds if the computing parties in
SMPC collude with each other. This might or might not be the
case for the other approaches (e.g., federated learning)
depending on the exchanged model parameters and whether
they can be abused to infer the underlying private data.

Privacy of the exchanged traffic indicates how much the
traffic is kept private from the server. In HE/SMPC, the data
are encrypted first and then shared with the server, which
is reasonable since it is the clients’ private data. In feder-
ated learning, the traffic (model parameters) is directly
shared with the server assuming that it does not reveal any
details regarding individual samples in the data. The aim
of the hybrid approaches is to hide the real values of the
model parameters from the server to minimize the possi-
bility of inference attacks using the model parameters.
FLþHE is the best among the hybrid approaches from this
viewpoint.

Privacy guarantee is a metric which quantifies the degree
to which the privacy of the clients’ data can be preserved.
Differential privacy and the corresponding hybrid approach
(FLþDP) are the only approaches providing a privacy guar-
antee, whereas all other approaches can only protect the
privacy under a set of certain assumptions. In HE, the server
must not have the decryption key; in SMPC, not all comput-
ing parties must collude with each other; in federated
learning, the model parameters should not give any detail
about a sample in the clients’ data.

Discussion and Open Problems

In HE, a single computing party carries out computation
over the encrypted data from the clients. In SMPC, multiple
computing parties perform operations on the secret shares
from the clients. In federated learning, a single server
aggregates the local model parameters shared by the cli-
ents. From a practical point of view, HE and SMPC that
follow the paradigm of “move data to computation“ do not
scale as the number of clients or data size in clients become
large. This is because they put the computational burden on
a single or a few computing parties. Federated learning, on
the other hand, distributes the computation across the
clients (aggregation on the server is not computationally
heavy) but the communication overhead between the serv-
er and clients is the major challenge to scalability of
federated learning. The hybrid approaches inherit this issue
and it is exacerbated in FLþ SMPC. Combining HE with
federated learning (FLþHE) adds another obstacle (compu-
tational overhead) to the scalability of federated learning.
There is a growing body of literature on communication-
efficient approaches to federated learning that can dramat-
ically improve the scalability of federated learning and
make it suitable for large-scale applications including those
in biomedicine.

Given that federated learning is the most promising
approach from the scalability viewpoint, it can be used as

a standalone approach as long as inferring the clients’ data
from the model parameters is practically impossible. Other-
wise, it should be combinedwith differential privacy to avoid
possible inference attacks and exposure of clients’ private
data and to provide privacy guarantee. The accuracy of the
model will be satisfactory in federated learning but it might
be deteriorated in FLþDP. A realistic trade-off needs to be
considered depending on the application of interest.

Moreover, differential privacy can have many practical
applications in biomedicine as a standalone approach. It
works very well for low-sensitivity queries such as counting
queries (e.g., number of patients with a specific disease) on
genomic databases and their generalizations (e.g., histo-
grams) since the presence or absence of an individual
changes the query’s response by at most one. Moreover, it
can be employed to release summary statistics of GWAS such
as χ2 and p-values in a differentially private manner while
keeping the accuracy acceptable. A novel promising research
direction is to incorporate differential privacy in deep gen-
erative models to generate synthetic genomic and biomedi-
cal data.

Future studies can investigate how to reach a compromise
between scalability, privacy, and accuracy in real-world
settings. The communication overhead of federated learning
is still an open problem since although state-of-the-art
approaches considerably reduce the network overhead,
they adversely affect the accuracy of the model. Hence, novel
approaches are required to preserve the accuracy, which is of
great importance in biomedicine, while making federated
learning communication efficient.

Adopting federated learning in non-IID settings, where
genomic and biomedical datasets across different hospitals/
medical centers are heterogeneous, is another important
challenge to address. This is because typical aggregation
procedures such as simple averaging do not work well for
these settings, yielding inaccurate models. Hence, new ag-
gregation procedures are required to tackle non-IID scenari-
os. Moreover, current communication-efficient approaches
which were developed for an IID setting might not be
applicable to heterogeneous scenarios. Consequently, new
techniques are needed to reduce network overhead in these
settings, while keeping the model accuracy satisfactory.

Combining differential privacy with federated learning to
enhance privacy and to provide a privacy guarantee is still a
challenging issue in the field. It becomes even more challeng-
ing forhealth care applications,where accuracyof themodel is
of crucial importance. Moreover, the concept of privacy guar-
antee indifferential privacy has beendefined for local settings.
Indistributed scenarios, a datasetmight be employedmultiple
times to train different models with various privacy budgets.
Therefore, a new formulation of privacy guarantee should be
proposed for distributed settings.

Conclusion

For AI techniques to succeed, big biomedical data needs to be
available and accessible. However, the more AI models are
trained on sensitive biological data, the more the awareness
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about the privacy issues increases, which, in turn, necessitate
strategies for shielding the data.70Hence, privacy-enhancing
techniques are crucial to allow AI to benefit from the sensi-
tive biological data.

Cryptographic techniques, differential privacy, and feder-
ated learning can be considered as the prime strategies for
protecting personal data privacy. These emerging techniques
are based on either securing sensitive data, perturbing it or
not moving it off site. In particular, cryptographic techniques
securely share the data with a single (HE) or multiple
computing parties (SMPC); differential privacy adds noise
to sensitive data and quantifies privacy loss accordingly,
while federated learning enables collaborative learning un-
der orchestration of a centralized server without moving the
private data outside local environments.

All of these techniques have their own strengths and
limitations. HE and SMPC are more communication efficient
compared with federated learning but they are computation-
ally expensive since they move data to computation and put
the computational burden on a server or a few computing
parties. Federated learning, on the other hand, distributes
computation across the clients but suffers from high network
communication overhead. Differential privacy is an efficient
approach from a computational and a communication per-
spectivebut it introduces accuracy loss by adding noise to data
or model parameters. Hybrid approaches are studied to com-
bine the advantages or to overcome the disadvantages of the
individual techniques. We argued that federated learning as a
standalone approach or in combination with differential pri-
vacy is the most promising approach to be adopted in bio-
medicine. We discussed the open problems and challenges in
this regard including the balance of communication efficiency
andmodel accuracy innon-IID settings, and theneed for a new
notion of privacy guarantee for distributed biomedical
datasets.

Incorporating privacy into the analysis of genomic and
biomedical data is still an open challenge, yet preliminary
accomplishments are promising to bring practical privacy
even closer to real-world settings. Future research should
investigate how to achieve a trade-off between scalability,
privacy, and accuracy in real biomedical applications.
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