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Introduction

Many researchers use clinician performance as a benchmark
for machine learning with a range of methods to compare
human and machine performances.1–7 The most common is
receiver operating characteristic (ROC) analysis with the
area under the curve (AUC) being the primary performance
metric. As this is used commonly for comparing different
models, this has come into use for comparing human and

machine performance. ROC and AUC analyses provide an
effective generalized summary of performance that is cost
and prevalence invariant. When applied to practical appli-
cations, however, cost and prevalence assumptions are
necessary to decide how to optimise the sensitivity–speci-
ficity tradeoff. In reviewing existing literature, we have
identified several ways that the ROC analysis is used in
the human versus machine context that can lead to errone-
ous results.
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Abstract Background Receiver operating characteristic (ROC) analysis is commonly used for
comparing models and humans; however, the exact analytical techniques vary and
some are flawed.
Objectives The aim of the study is to identify common flaws in ROC analysis for
human versus model performance, and address them.
Methods We review current use and identify common errors. We also review the ROC
analysis literature for more appropriate techniques.
Results We identify concerns in three techniques: (1) using mean human sensitivity
and specificity; (2) assuming humans can be approximated by ROCs; and (3) matching
sensitivity and specificity. We identify a technique from Provost et al using dominance
tables and cost-prevalence gradients that can be adapted to address these concerns.
Conclusion Dominance tables and cost-prevalence gradients provide far greater
detail when comparing performances of models and humans, and address common
failings in other approaches. This should be the standard method for such analyses
moving forward.
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Objectives

The aimof the study is to assesswhether current practices for
comparing human and machine performance are appropri-
ate, and if not, identify a more rigorous approach.

Methods

Wesearched the literature for papers that comparehuman and
machine performance using keyword searches on combina-
tions of “human,” “clinician,” “AI,” “artificial intelligence,” “ma-
chine,” “model,” “ROC,” and “performance” aswell asmanually
reviewing citations from notable articles especially on the
topic.8–10We reviewed the analytical approach of the relevant
papers, and identified several methods of concern related to
ROC analysis. Evaluation of the methods was done from the
frame of reference of being able to use the results to guide real-
worlddecisions.We then reviewed the original papersdescrib-
ing the theory behindROCanalysis and identifiedavariant that
can appropriately address the concerns raised.

Results

Concerns with Existing Approaches
Several highly cited papers that use ROC as a basis for
machine–human comparison stand out5–7 with further ex-
emplary papers being identified after further review.1,4

Other works looked at factors other than performance,
such as speed or ease.2,3 We identified concerns with three
approaches comparing performance via ROC analysis:

1. Using mean human sensitivity and specificity.
2. Assuming humans can be approximated by ROCs.
3. Sensitivity and specificity matching.

As the specifics of the individual papers differ, we will
present the core elements of the three methods, and discuss
the concerns with each.

Mean Human Sensitivity and Specificity
Using the mean human sensitivity and specificity (i.e., the
[sensitivity, specificity] pair of (mean(sensh),mean(spech))for
h 2 Human per formances) in comparison with the ROC of a
model will always underestimate the human performance
and put it at a disadvantage. This risks over-calling claims of
model superiority. The geometric mean of a series of points
will always be inside the convex hull (the smallest convex set
containing all the points11). For example, we could have a
model that for every operating point, we could find a human
that was fractionally better. If we examine the ROC plot, then
wewouldfind that the ROC of themodel is always dominated
by human performance. However, if we take the mean
sensitivity and specificity of the model, this would be within
the ROC of themodel (►Fig. 1) andwewould claim themodel
is superior to human performance, which conflicts with the
result of humans dominating at all operating points. This is a
comparison between differentmetrics (the ROC of themodel
and the geometric mean of performances) and results in
over-optimistic claims of model performance.

Approximating Humans with ROC Curves
A second approach is to approximate humans with ROC
curves by constructing the convex hull of human perfor-
mance, plus the points at (0,0) and (1,1) and considering that
curve as the human ROC. Although this does allow one to
compute an AUC for humans (and thus compare the same
AUC metric between humans and models), there are still
several concerns. The primary concern is in comparing a
model for which you can choose an operating characteristic
with humans who have a single operating characteristic
guided by their practical experience in context. This would
mean that humanperformances do not cover the full range of
sensitivities and specificities, thus being under sampled
especially in the extreme ranges, and rather would be
concentrated on a range that is appropriate for the task
that they take on in the real world. This can only result in
underestimating the ROC of human performance. Due to the
construction method of a convex hull, undersampling a
region will result in a lower estimation of the ROC.

As medical professionals are generally optimizing for
patient outcomes, considering prevalence and relative cost
of errors, it is perhaps a reasonable assumption that if there
are few human professionals operating at a given sensitivity
or specificity region (e.g., high sensitivity), then the operat-
ing region may not be clinically valuable. As such, it may not
be such an important consideration whether humans or
models are better in that region. However, in this form of
analysis, human performance will again be underestimated,
and the real-world considerations will not be appropriately

Fig. 1 A set of human performances (purple dots) with mean
sensitivity and specificity (purple cross), the convex hull of optimal
human performance (black), the estimated ROC of human perfor-
mance (green) and a model’s ROC (red). All ROCs/ROC estimates
dominate the mean performance. The model ROC dominates in high-
specificity conditions, and has a higher AUC, but is dominated in the
range where humans primarily operate. AUC, area under the curve;
ROC, receiver operating characteristic.
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considered. Although it is unlikely to miscall results in clear
cases, it is not ideal and leaves room for improvement.

Sensitivity and Specificity Matching
The third approach, which is sensitivity/specificity
matched performance, takes this into account. Typically,
a high-sensitivity and a high-specificity operating point
(often chosen to be 0.90 or similar) of a model will be
compared with equivalent human performance. This com-
pares operating points with other operating points, which
addresses many of the concerns of the above approaches.
Of the approaches discussed, this is the most informative
and appropriate. However, it still has the issue of requir-
ing the researchers to choose the sensitivity/specificity
points to compare, and typically only covers one or two
operating points. Ideally, such subjective choices in the
analysis by the researchers would not be necessary. Rath-
er, a parameter-free methodology would be preferable,
especially one that is able to describe a wider range of
performances.

ROC Analysis Variant
An analytical method for ROC was presented by Provost
et al in 199812 (which forms part of the foundational work
of these authors prior to the seminal An introduction to
ROC Analysis13). This method is able to address the prob-
lems of comparing ROCs of models with operating points
of humans and provide relevant information for assessing
real-world performance. They suggest and demonstrate a
variation of ROC analysis on the basis of the convex hull of
all models. They consider which model dominates in
different areas of the full range of cost and prevalence
ratios. This results in a table of “slope ranges” where for
each prevalence-adjusted cost-gradient slope range (prev-
alence-cost gradients [CG]), a single model is identified as
dominating. In this way, one can identify which model is
superior under specific conditions, providing the neces-
sary information for practical applications. This work did
not consider the addition of human performances, but as
the analysis is on the basis of a finite set of operating
points of models, rather than a smoothed, continuous
ROC, it is easily generalizable to humans by adding their
individual operating points.

One limitation of this approach is that it does not allow the
presentation of prevalence-variant metrics such as positive
predictive value (PPV), as the prevalence-CGs take into
consideration both the prevalence and cost (by definition).
To consider such metrics, one can make assumptions about
the prevalence in the relevant population and the metrics
provided give sufficient information to be able to compute
the rest of the relevant information. For example, one might
consider a model for use in a diagnostic screening program,
and so assume the population-level prevalence of the condi-
tion. On that basis, one can compute the 2�2 table of true and
false positives andnegatives fromwhich all othermetrics can
be computed.

The cost-gradient ranges are found by identifying which
operating point minimizes the equation:

The cost prevalence gradient (CPG) is the ratio of positive
to negative cases multiplied by the ratio of costs for false
positive and false negative results. If one makes an assump-
tion about the prevalence, then one can derive the CG from
the CPG as the following:

Similarly, one can adjust for assumed cost ratios and
examine the ranges according to prevalence.

Worked Example
Consider the comparison of two models for detecting dia-
betic retinopathy (DR) against the performance of 15 special-
ists. The models are trained to detect DR from retinal fundus
images taken using a custom attachment for smartphone
cameras. The performance of this model is compared against
a group of 15 specialists. Assume all testing and data collec-
tion methodologies were sound. Consider the application in
a two-step diagnosis with population screening followed by
an in-clinic assessment for at-risk patients.

The ROC of the model and human results are shown
in ►Fig. 1, with the dominance table in ►Table 1. A 17.7%
in-population prevalence was assumed to create the cost-
gradient table in ►Table 1.

The false-positive and false-negative costs for the screen-
ing program are assumed to be the same, resulting in a cost-
gradient of 1. Examining►Table 1, Model A dominates under
these conditions and would be the best choice. For the
screening program, one might consider the (0.93, 0.60)
sensitivity/specificity operating point which would yield a
PPV of 0.41 and NPV of 0.97. For those patients requiring in-
clinic follow-up, assume a 41% post-screening prevalence
and re-evaluate which is the best model (►Table 1). Assum-
ing a 5:1 cost ratio of false positive to false negative, we can
see that it falls in the range where Specialist C is dominating.
Human performance is better under these prevalence and
cost conditions, and so specialist review is still preferred
after screening

Discussion

This ROC analysis variant using dominance tables addresses
the majority of the concerns raised. It compares operating
points between models and humans in a way that provides
all the relevant information necessary to evaluate the appro-
priate choice in differing cost-prevalence conditions. Fur-
ther, it does this using only small extensions to existing
techniques.

It is possible to consider such dominance tables applicable
for any ROC analysis, even for model to model comparisons
without human performances. First, it applies more gener-
ally to any comparison of a group of sensitivity–specificity
pairs against models. Second, it can apply when comparing
AUCs of models, where one might have partial dominance
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between the two models.12 The usual guidance is to look at
the ROC plot, but the dominance table provides all of the
information in a quantified and detailed manner that could
be understood from analyzing the plot. This level of detail
and transparency around the performance of the models can
only be positive for ongoing research.

It would be necessary for additional tooling to be created
to support the proposed methodology. Relevant statistical
packages for ROC analysis would need to be extended to
make this accessible.

Thismethod so far does not take into consideration how to
managevariance for ROCs andhumanperformance. This is an
important and non-trivial aspect of ROC analysis and is
treated in depth in a study by Fawcett.13 Further, this does
not address extensions tomultiple-class classifierswherewe
would argue that the concerns are greater due to the higher
complexity and increased risk of pitfalls.

Conclusion

It is likely that some claims of models beating human
performance are wrong due to flawed ROC analysis method-
ologies for comparing human and model performances. A
variation on a method presented by Provost et al for compar-
ing different models can be adapted for comparing models
and humans (ormodels andmodels) using dominance tables.
These tables, combinedwith cost-prevalence gradients allow
for accurate claims of model or human superiority under a
range of assumptions, allowing for clearer presentation of
results and more accurate claims. This should be necessary
for any of the papers comparing human and model
performance.
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