Schwannomas are typically solitary, well-encapsulated, benign tumors running along or attached to a nerve. An intradural-extradural cervical spinal schwannoma, which first manifests as a swelling in the anterior neck, has not been reported to the best of our knowledge. We present the case of a 69-year-old patient complaining of a gradually worsening painful left cervical swelling for over 8 years. First, a posterior spinal midline approach was performed for the resection of the tumor and the tumor portion in the vertebral canal was totally removed. The second operation, the anterolateral approach, was planned to be executed in a second surgical session. The patient was discharged from the hospital without neurological deficits. Histopathological diagnosis was schwannoma. The first aim of surgery is to treat neurological deficits in patients with cervical intraspinal schwannomas with/without extension into the extra-vertebral paravertebral neck regions. The surgical strategy combines the posterior midline and the anterolateral cervical approaches in the same session or at different times.
Introduction

Schwannomas are benign mesenchymal tumoral masses that originate from Schwann cells on the peripheral nerve sheath, including the spinal dorsal nerve roots.1–3 Spinal schwannomas occur rarely and compress neighboring structures in the neck region.4 An intradural-extramedullary schwannoma with a solitary extradural component anteriorly extended is a very rare entity.5,6 It is unusual for an intraspinal schwannoma to present with a swelling in the neck. To the best of our knowledge, an intradural-extramedullary cervical spinal schwannoma which first manifests as a swelling in the anterior neck region has not been reported.

Clinical Presentation

Patient Characteristics

A 69-year-old right-handed man presented to our department complaining of a gradually worsening painful left anterior cervical swelling over 8 years. The mass was insidious and gradually increasing in size. Physical examination of the patient revealed an unusual palpable swelling, which was hard, non-pulsatile, and painless, in the left anterior neck region. The remainder of the physical examination was normal.

On neurological examination, muscle strength was normal and neither sensory deficiency nor pathological reflex was present. The patient had no dysphonia, syncopal attacks, dysphagia, or dyspnea. The magnetic resonance imaging (MRI) revealed an intradural extramedullary tumoral mass at the C2–C3 level (→Fig. 1 A-B). The tumor, which extends to the anterior neck region, was hypointense on T1-weighted magnetic resonance imaging (MRI) scans and hyperintense on T2-weighted MRI scans. It enhanced heterogeneously after administration of contrast media. The anterior–posterior diameter of the lesion has reached ~ 3 cm, with the spinal canal and the extension in the neural foramen, the total size reaching 6 cm. Computed tomography (CT) angiography showed no vascularization in the tumor, but an anterior displacement of the carotid sheath.

Surgical Procedure

Our surgical strategy combines the posterior midline approach and the anterolateral cervical approach at different times. First, a posterior spinal midline approach was performed for the resection of the tumor. The second operation, the anterolateral approach, was planned to be executed in a second surgical session. In the first operation, under general anesthesia, neuro-monitorization was used to monitor the intraoperative action potential of the trapezius and the upper limb muscles. A three-pin head holder was applied, and the patient was positioned prone. A two-level laminectomy at C2 and C3 was performed following a midline incision and a standard opening. A surgical microscope was introduced, and a longitudinal dural incision was made. This revealed the intradural part of the tumor, which was located under the C3 dorsal root and dentate ligaments (→Fig. 2). The tumor extended anterolaterally from the spinal cord, and this was evidenced by observation of the adjacent subarachnoid space. We removed the tumor in piecemeal fashion following a central debulking until total resection of the intraspinal part of the tumor was achieved.
An ultrasonic aspirator was employed during tumor removal, which turned out to be insufficient due to a semi-fibrotic structure of the lesion. The tumor was not extremely hemorrhagic, and no evidence of tumor necrosis was observed either. Intraoperatively, it was consistent with a schwannoma, which was later confirmed with the histopathological examination.

Postoperative follow-up
Postoperative MRI images demonstrated a total removal of the tumor in the vertebral canal with the extraspinal anterior part of the tumor left untouched. (Fig. 3). The patient was discharged from the hospital without neurological deficits.

Discussion
In literature, there are rare case reports of schwannoma, which manifest with cervical swelling, including the tongue, thyroid gland, intraparotid gland facial nerve, the cervical sympathetic chain, brachial plexus, and vagal nerve schwannomas. But the anteriorly extended intradural extramedullary cervical schwannoma is uncommon. In addition to this infrequency, in our case, the intradural extramedullary lesion has an anterior extension, which causes observable and palpable neck swelling. This clinical presentation for a spinal schwannoma is atypical.

To understand head and neck surgery and to perform systematic and safe excision of tumors, training in neuroanatomy of the neck region is essential. A detailed knowledge of the complex topographic relationships between muscles, blood vessels, nerves, and lymph nodes will enable the surgeon to safely perform difficult and risky dissection in the head and neck region. In addition, a good knowledge of both anterior and posterior approaches—as well as their variations—to the neck region is crucial in choosing the most appropriate surgical method. Conventional treatment for spinal tumors includes open laminectomy. However, a wide variety of alternative minimally invasive surgical techniques including laminoplasty and unilateral hemilaminectomy are used.

The diagnosis of cervical schwannoma is difficult due to the fact that they are slowly growing tumors, and the medical history and clinical examination are not specific. The symptoms are local pain or loss of sensation/strength due to intraspinal cervical spinal cord compression. However, asymptotically, their volume may gradually increase and, although rarely, they may appear as cervical swelling. After this stage, signs and symptoms are generally related to the size of the schwannoma, and symptoms such as dysphagia and dyspnea may appear due to the compression of the surrounding anatomical structures. Magnetic resonance imaging and computed tomography (CT) angiography are very useful diagnostic tools for surgical planning, as they show the extension and vascularity of the tumor and its relationship with important functional structures in the neck.

Conclusions
The first aim of surgery is to treat neurological deficits in cervical intraspinal schwannomas with extension into the extra-vertebral paravertebral neck regions. Therefore, the surgical strategy combines the posterior midline and the anterolateral cervical approaches in the same session or at different times.

Ethical Issues
The ethical issues for the present study involving human subjects have been carefully considered in line with the Declaration of Helsinki (1964).

Financial Support
None.

Authors’ Contributions
Erkin Özgiray: Conceived the idea, collected data, performed the analysis, interpreted the results, wrote the text, performed a literature search, critically reviewed the intellectual content, and revised the text.
Cihat Karagöz: Analyzed and designed data, interpreted the results, performed a literature search, revised the text, and critically reviewed the intellectual content.
Serdar Bölük: Analyzed and designed data, interpreted the results, performed a literature search, and revised the text.
Naci Balak: Analyzed and designed data, interpreted the results, performed a literature search, revised the text, and critically reviewed the intellectual content.

Patient Consent
The patient signed the informed consent agreement of clinical images and data for medical use.

Conflict of Interests
The authors have no conflict of interests to declare.

Acknowledgments
None.
References

