Synthesis 2022; 54(20): 4615-4621
DOI: 10.1055/s-0041-1738398
paper

Diastereoselective Synthesis of Spiro[benzopyrrolothiazole-thioazlactone] Derivatives from Erlenmeyer Thioazlactones and Azomethine Ylides

Issa Yavari
,
Hamideh Shirazi
,
Sara Sheikhi
,
Zohreh Taheri
We are grateful to the Research Council of Tarbiat Modares University for support of this work.


Abstract

Erlenmeyer thioazlactones reacted with 3-(2-oxo-2-arylethyl)benzo[d]thiazol-3-ium bromides in the presence of Et3N in MeCN to afford 1-aryloyl-2′-(benzylthio)-2-aryl-2,3a-dihydro-1H,5′H-spiro[benzo[d]pyrrolo[2,1-b]thiazole-3,4′-thiazol]-5′-ones. Formally, this transformation can be regarded as a Huisgen reaction of the exocyclic carbon–carbon double bond of the Erlenmeyer thioazlactones and azomethine ylides generated in situ. Evidence for the structure of a product was obtained from single-crystal X-ray analyses. The important feature of this reaction is the fact it forms four stereogenic centers, one of which is quaternary, with excellent selectivity.

Supporting Information



Publication History

Received: 29 March 2022

Accepted after revision: 02 May 2022

Article published online:
08 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 1b Sweeney JB, Doulcet J, Thapa B. iScience 2018; 9: 328
    • 3a Greimel P, Spreitz J, Stutz A, Wrodnigg T. Curr. Top. Med. Chem. 2003; 3: 513
    • 3b Fiaux H, Popowycz F, Favre S, Schütz C, Vogel P, Gerber-Lemaire S, Juillerat-Jeanneret L. J. Med. Chem. 2005; 48: 4237
    • 3c Ashry EH. E, Nemr AE. Synthesis of Naturally Occurring Nitrogen Heterocycles from Carbohydrates. Blackwell Publishing; Oxford: 2005: 1-72
    • 3d Ouchi H, Asahina A, Asakawa T, Inai M, Hamashima Y, Kan T. Org. Lett. 2014; 16: 1980
  • 4 Chiappori AA, Haura E, Rodriguez FA, Boulware D, Kapoor R, Neuger AM, Lush R, Padilla B, Burton M, Williams C, Simon G, Antonia S, Sullivan DM, Bepler G. Clin. Cancer Res. 2008; 14: 1464
  • 5 Tsou E.-L, Chen S.-Y, Yang M.-H, Wang S.-C, Cheng T.-RR, Cheng W.-C. Bioorg. Med. Chem. 2008; 16: 10198
    • 6a Notz W, Tanaka F, Barbas CF. Acc. Chem. Res. 2004; 37: 580
    • 6b Pearson WH, Dietz A, Stoy P. Org. Lett. 2004; 6: 1005
    • 6c Bhat C, Tilve SG. RSC Adv. 2014; 4: 5405
    • 6d Xiao Z.-F, Ding T.-H, Mao S.-W, Shah Z, Ning X.-S, Kang Y.-B. Org. Lett. 2016; 18: 5672
    • 6e Trost BM, Gnanamani E, Hung C.-IJ, Kalnmals CA. Org. Lett. 2019; 21: 1890
  • 7 Flick AC, Ding HX, Leverett CA, Kyne RE. Jr, Liu KK. C, Fink SJ, O’Donnell CJ. J. Med. Chem. 2017; 60: 6480
    • 8a You Y, Lu W.-Y, Wang Z.-H, Chen Y.-Z, Xu X.-Y, Zhang X.-M, Yuan WC. Org. Lett. 2018; 20: 4453
    • 8b Fang X, Wang C.-J. Org. Biomol. Chem. 2018; 16: 2591
    • 8c Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Curr. Top. Med. Chem. 2019; 19: 1694
    • 8d Cheng F, Kalita SJ, Zhao Z.-N, Yang X, Zhao Y, Schneider U, Shibata N, Huang Y.-Y. Angew. Chem. Int. Ed. 2019; 58: 16637
    • 8e Kalita SJ, Cheng F, Fan Q.-H, Shibata N, Huang Y.-Y. J. Org. Chem. 2021; 86: 8695
    • 8f Duffy C, Roe WE, Harkin AA, McNamee R, Knipe PC. New J. Chem. 2021; 45: 22034
    • 8g Zhao JQ, Zhou S, Yang L, Du H.-Y, You Y, Wang Z.-H, Zhou M.-Q, Yuan W.-C. Org. Lett. 2021; 23: 8600
    • 9a Chandrasekhar S, Rao VM. J. Heterocycl. Chem. 2014; 51: E172
    • 9b Ziyaei-Halimehjani A, Khoshdoun M. J. Org. Chem. 2016; 81: 5699
    • 9c Yavari I, Taheri Z, Sheikhi S, Bahemmat S, Halvagar MR. Mol. Diversity 2020; 24: 727
  • 10 X-ray crystal structure determination of 3m. CCDC 2060493 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.