Synlett 2022; 33(04): 361-366
DOI: 10.1055/s-0041-1737762
letter

Nickel-Catalyzed Reductive Cross-Coupling of Benzylic Sulfonium Salts with Aryl Iodides

Wei Wang
a   Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444
,
Ken Yao
a   Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444
,
Fan Wu
b   Institute of Drug Discovery Technology and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. of China
› Author Affiliations
This research was supported by the National Natural Science Foundation of China (No. 21871173).


Abstract

A nickel-catalyzed cross-electrophile coupling of benzylic sulfonium salts with aryl iodides has been developed, providing direct access to diarylalkanes from readily available and stable coupling partners. Preliminary mechanistic studies suggest that the C–S bond cleavage proceeds through a single-electron transfer process to generate a benzylic radical.

Supporting Information



Publication History

Received: 27 October 2021

Accepted after revision: 20 December 2021

Article published online:
13 January 2022

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For selected reviews, see:
    • 1a Knappke CE, Grupe S, Gärtner D, Corpet M, Gosmini C, von Wangelin AJ. Chem. Eur. J. 2014; 20: 6828
    • 1b Weix DJ. Acc. Chem. Res. 2015; 48: 1767
    • 1c Liu J, Ye Y, Sessler JL, Gong H. Acc. Chem. Res. 2020; 53: 1833

      For selected reviews, see:
    • 2a Gu J, Wang X, Xue W, Gong H. Org. Chem. Front. 2015; 2: 1411
    • 2b Wang X, Dai Y, Gong H. Top. Curr. Chem. 2016; 374: 43
    • 2c Richmond E, Moran J. Synthesis 2018; 50: 499
    • 2d Poremba KE, Dibrell SE, Reisman SE. ACS Catal. 2020; 10: 8237
    • 2e Xue W, Jia X, Wang X, Tao X, Yin Z, Gong H. Chem. Soc. Rev. 2021; 50: 4162

      For selected examples of the cross-electrophile coupling of organohalides, see:
    • 3a Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
    • 3b Yu X, Yang T, Wang S, Xu H, Gong H. Org. Lett. 2011; 13: 2138
    • 3c Biswas S, Weix DJ. J. Am. Chem. Soc. 2013; 135: 16192
    • 3d Cherney AH, Kadunce NT, Reisman SE. J. Am. Chem. Soc. 2013; 135: 7442
    • 3e Zhao C, Jia X, Wang X, Gong H. J. Am. Chem. Soc. 2014; 136: 17645
    • 3f Cherney AH, Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
    • 3g Wang X, Wang S, Xue W, Gong H. J. Am. Chem. Soc. 2015; 137: 11562
    • 3h Liu J, Ren Q, Zhang Q, Gong H. Angew. Chem. Int. Ed. 2016; 55: 15544
    • 3i Zhang P, Le C, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
    • 3j Wang X, Ma G, Peng Y, Pitsch CE, Moll BJ, Ly TD, Wang X, Gong H. J. Am. Chem. Soc. 2018; 140: 14490
    • 3k Kim S, Goldfogel MJ, Gilbert MM, Weix DJ. J. Am. Chem. Soc. 2020; 142: 9902
    • 3l Sakai HA, Liu W, Le C, MacMillan DW. C. J. Am. Chem. Soc. 2020; 142: 11691
    • 4a Zhao Y, Weix DJ. J. Am. Chem. Soc. 2014; 136: 48
    • 4b Zhao Y, Weix DJ. J. Am. Chem. Soc. 2015; 137: 3237
    • 4c Wu L, Yang G, Zhang W. CCS Chem. 2019; 1: 623
    • 5a Woods BP, Orlandi M, Huang C.-Y, Sigman MS, Doyle AG. J. Am. Chem. Soc. 2017; 139: 5688 ; corrigendum: J. Am. Chem. Soc. 2018, 140, 24
    • 5b Steiman TJ, Liu J, Mengiste A, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7598
    • 6a Huihui KM. M, Caputo JA, Melchor Z, Olivares AM, Spiewak AM, Johnson KA, DiBenedetto TA, Kim S, Ackerman LK. G, Weix DJ. J. Am. Chem. Soc. 2016; 138: 5016
    • 6b Suzuki N, Hofstra JL, Poremba KE, Reisman SE. Org. Lett. 2017; 19: 2150
    • 7a Liao J, Basch CH, Hoerrner ME, Talley MR, Boscoe BP, Tucker JW, Garnsey MR, Watson MP. Org. Lett. 2019; 21: 2941
    • 7b Martin-Montero R, Yatham VR, Yin H, Davies J, Martin R. Org. Lett. 2019; 21: 2947
    • 7c Yi J, Badir SO, Kammer LM, Ribagorda M, Molander GA. Org. Lett. 2019; 21: 3346
    • 7d Yue H, Zhu C, Shen L, Geng Q, Hock KJ, Yuan T, Cavallo L, Rueping M. Chem. Sci. 2019; 10: 4430
    • 7e Ni S, Li C.-X, Mao Y, Han J, Wang Y, Yan H, Pan Y. Sci. Adv. 2019; 5: eaaw9516 DOI: 10.1126/sciadv.aaw9516.
    • 7f Heinz C, Lutz JP, Simmons EM, Miller MM, Ewing WR, Doyle AG. J. Am. Chem. Soc. 2018; 140: 2292
    • 7g He R.-D, Li C.-L, Pan Q.-Q, Guo P, Liu X.-Y, Shu X.-Z. J. Am. Chem. Soc. 2019; 141: 12481

    • For a related oxidative coupling example, see:
    • 7h Dorsheimer JR, Ashley MA, Rovis T. J. Am. Chem. Soc. 2021; 143: 19294
  • 8 Hughes JM. E, Fier PS. Org. Lett. 2019; 21: 5650
    • 9a Anka-Lufford LL, Prinsell MR, Weix DJ. J. Org. Chem. 2012; 77: 9989
    • 9b Cui X, Wang S, Zhang Y, Deng W, Qian Q, Gong H. Org. Biomol. Chem. 2013; 11: 3094
    • 9c Liu J.-H, Yang C.-T, Lu X.-Y, Zhang Z.-Q, Xu L, Cui M, Lu X, Xiao B, Fu Y, Liu L. Chem. Eur. J. 2014; 20: 15334
    • 9d Molander GA, Traister KM, O’Neill BT. J. Org. Chem. 2015; 80: 2907
    • 9e Arendt KM, Doyle AG. Angew. Chem. Int. Ed. 2015; 54: 9876
    • 9f Ackerman LK. G, Anka-Lufford LL, Naodovic M, Weix DJ. Chem. Sci. 2015; 6: 1115
    • 9g Konev MO, Hanna LE, Jarvo ER. Angew. Chem. Int. Ed. 2016; 55: 6730
    • 9h Wang J, Zhao J, Gong H. Chem. Commun. 2017; 53: 10180
    • 9i Komeyama K, Ohata R, Kiguchi S, Osaka I. Chem. Commun. 2017; 53: 6401
    • 9j Yan X.-B, Li C.-L, Jin W.-J, Guo P, Shu X.-Z. Chem. Sci. 2018; 9: 4529
    • 9k Ye Y, Chen H, Sessler JL, Gong H. J. Am. Chem. Soc. 2019; 141: 820
    • 9l Gao M, Sun D, Gong H. Org. Lett. 2019; 21: 1645
    • 9m Pan Y, Gong Y, Song Y, Tong W, Gong H. Org. Biomol. Chem. 2019; 17: 4230
    • 9n Ye Y, Chen H, Ma G, Gong H. Org. Lett. 2020; 22: 2070
    • 10a Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 10b Smith BR, Eastman CM, Njardarson JT. J. Med. Chem. 2014; 57: 9764
    • 11a Vanier C, Lorgé F, Wagner A, Mioskowski C. Angew. Chem. Int. Ed. 2000; 39: 1679
    • 11b Hooper JF, Chaplin AB, González-Rodríguez C, Thompson AL, Weller AS, Willis MC. J. Am. Chem. Soc. 2012; 134: 2906
    • 11c Lin H, Dong X, Li Y, Shen Q, Lu L. Eur. J. Org. Chem. 2012; 4675
    • 11d Vasu D, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 7162
    • 11e Vasu D, Yorimitsu H, Osuka A. Synthesis 2015; 47: 3286
    • 11f Cowper P, Jin Y, Turton MD, Kociok-Köhn G, Lewis SE. Angew. Chem. Int. Ed. 2016; 55: 2564
    • 11g Wang S.-M, Wang X.-Y, Qin H.-L, Zhang C.-P. Chem. Eur. J. 2016; 22: 6542
    • 11h Wang X.-Y, Song H.-X, Wang S.-M, Yang J, Qin H.-L, Jiang X, Zhang C.-P. Tetrahedron 2016; 72: 7606
    • 11i Kawashima H, Yanagi T, Wu C.-C, Nogi K, Yorimitsu H. Org. Lett. 2017; 19: 4552
    • 11j Simkó DC, Elekes P, Pázmándi V, Novák Z. Org. Lett. 2018; 20: 676
    • 11k Aukland MH, Talbot FJ. T, Fernández-Salas JA, Ball M, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 9785
    • 12a Wang S.-M, Song H.-X, Wang X.-Y, Liu N, Qin H.-L, Zhang C.-P. Chem. Commun. 2016; 52: 11893
    • 12b Uno D, Minami H, Otsuka S, Nogi K, Yorimitsu H. Chem. Asian J. 2018; 13: 2397
    • 13a Tian Z.-Y, Wang S.-M, Jia S.-J, Song H.-X, Zhang C.-P. Org. Lett. 2017; 19: 5454
    • 13b Waldecker B, Kraft F, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2018; 57: 12538
    • 14a Minami H, Otsuka S, Nogi K, Yorimitsu H. ACS Catal. 2018; 8: 579
    • 14b Minami H, Nogi K, Yorimitsu H. Heterocycles 2018; 97: 998
  • 15 Minami H, Nogi K, Yorimitsu H. Org. Lett. 2019; 21: 2518
  • 16 Li X, Golz C, Alcarazo M. Angew. Chem. Int. Ed. 2019; 58: 9496
  • 17 Gendron T, Sander K, Cybulska K, Benhamou L, Sin PK. B, Khan A, Wood M, Porter MJ, Årstad E. J. Am. Chem. Soc. 2018; 140: 11125
    • 18a Srogl J, Allred GD, Liebeskind LS. J. Am. Chem. Soc. 1997; 119: 12376
    • 18b Zhang S, Marshall D, Liebeskind LS. J. Org. Chem. 1999; 64: 2796

      For recent reviews, see:
    • 19a Tian Z.-Y, Hu Y.-T, Teng H.-B, Zhang C.-P. Tetrahedron Lett. 2018; 59: 299
    • 19b Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
    • 19c Nogi K, Yorimitsu H. Chem. Asian J. 2020; 15: 441
    • 19d Lou J, Wang Q, Wu P, Wang H, Zhou Y.-G, Yu Z. Chem. Soc. Rev. 2020; 49: 4307
    • 19e Fan R, Tan C, Liu Y, Wei Y, Zhao X, Liu X, Tan J, Yoshida H. Chin. Chem. Lett. 2021; 32: 299
    • 19f Yorimitsu H. Chem. Rec. 2021; 21: 3356
  • 20 Yanagi T, Somerville RJ, Nogi K, Martin R, Yorimitsu H. ACS Catal. 2020; 10: 2117
  • 21 Lansbergen B, Granatino P, Ritter T. J. Am. Chem. Soc. 2021; 143: 7909 ; corrigendum: J. Am. Chem. Soc. 2021, 143, 10477
  • 22 Two equivalents of the secondary sulfonium salt were required for the coupling reaction to be efficient, as 44% of the homocoupling product (based on the aryl iodide) was detected under the standard reaction conditions.
  • 23 Methyl 4-(3,4,5-Trimethoxybenzyl)benzoate (11); Scaled-Up Synthesis A flame-dried Schlenk flask was charged with dimethyl(3,4,5-trimethoxybenzyl)sulfonium triflate (863 mg, 2.2 mmol, 110 mol%), methyl 4-iodobenzoate (2; 524 mg, 2.0 mmol, 100 mol%), Ni(acac)2 (51 mg, 0.2 mmol, 10 mol%), 4,4′-di-tert-butyl-2,2′-bipyridine (81 mg, 0.3 mmol, 15 mol%), Zn powder (392 mg, 6.0 mmol, 200 mol%), and MgCl2 (190 mg, 2.0 mmol, 100 mol%). The tube was capped with a rubber septum and evacuated and refilled with N2 three times. DMA (1.0 mL) was then added to the flask from a syringe, and the mixture was stirred at r.t. for 12 h under N2. The reaction was then quenched with H2O and the mixture was diluted with EtOAc (100 mL). The organic layer was washed with H2O (2 × 50 mL), dried (Na2SO4), filtered, and evaporated under reduced pressure. The residue was purified by column chromatography [silica gel, 3% EtOAc in PE] to give a colorless oil; yield: 546 mg (86%). 1H NMR (600 MHz, CDCl3): δ = 7.97 (d, J = 8.3 Hz, 2 H), 7.27 (d, J = 8.3 Hz, 2 H), 6.38 (s, 2 H), 3.97 (s, 2 H), 3.90 (s, 3 H), 3.83 (s, 3 H), 3.80 (s, 6 H). 13C NMR (151 MHz, CDCl3): δ = 167.0, 153.3, 146.2, 136.5, 135.7, 129.8, 128.8, 128.2, 106.0, 60.8, 56.0, 52.0, 42.1. HRMS (ESI): m/z [M + Na]+ calcd for C18H20NaO5: 339.1203; found: 339.1190.
  • 24 See the Supporting Information for details.
  • 25 Yamada K, Yanagi T, Yorimitsu H. Org. Lett. 2020; 22: 9712
    • 26a Péter Á, Perry GJ. P, Procter DJ. Adv. Synth. Catal. 2020; 362: 2135
    • 26b Chen C, Wang Z.-J, Lu H, Zhao Y, Shi Z. Nat. Commun. 2021; 12: 4526