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Abstract This study reports the development of Rh(II)-catalyzed N–N
bond-forming reaction of amino acid derivatives or aliphatic amines to
provide hydrazine derivatives through the combined use of Rh2(esp)2

and [(3,4-dimethoxyphenyl)sulfonylimino]-2,4,6-trimethylphenylio-
dinane (3,4-(MeO)2C6H3SO2N=IMes). This is the first report of N–H ami-
nation of aliphatic amines with metal–nitrene species.

Key words amine, hydrazine, N–N bond, Rh(II) catalyst, nitrene

The nitrogen–nitrogen (N–N) bond is a privileged struc-

tural motif in natural products.1 Among over 200 natural

products containing the motif, -hydrazino acid derivatives

are of particular interest because they exhibit a diverse ar-

ray of biological activities including antibacterial, anti-HCV,

and immunosuppressant properties (Figure 1). -Hydrazi-

no acids are also prevalent in pharmaceuticals, for example,

as core structures of carbidopa and cilazapril. Furthermore,

their incorporation into peptides has been investigated to

enhance the proteolytic stability or to control conforma-

tion.2

Despite their importance, the number of methods for

intermolecular N–N bond formation are still limited.3–5 In

addition to classical methods including N-nitrosation, di-

azotization, and azo coupling of amines followed by reduc-

tion, electrophilic N-amination of amines with oxaziridine

reagents is widely adopted for the synthesis of hydrazine

derivatives.2,4 Recently, some research groups have devel-

oped oxidative N–N bond formation between two distinct

amines or azoles using a Cu catalyst or iodine-based oxi-

dant as well as electrochemical oxidation.5 However, nucle-

ophilic and oxidation-sensitive amines are likely to cause

various side reactions including dimerization via N–N, C–C,

and C–N bond formation, and therefore, the combination of

substrates is rather limited.

Nevertheless, electrophilic metal–nitrene species gener-

ated from metal catalysts and various nitrene precursors

are capable of catalytic N–N bond formation with nitrogen-

containing heteroaromatics, tertiary amines, or (sulfon)am-

ides to form zwitterionic aminimides (N+–N–).6–9 However,

reactions with primary or secondary amines are underex-

plored due to the propensity of the highly nucleophilic sub-

strates to poison the catalysts by strong coordination to the

metal center.10,11 Recently, we reported the synthesis of N-

aryl-N′-tosyldiazenes from primary aromatic amines via N–

H amination with Rh(II)–nitrene followed by oxidation

(Scheme 1a).12 To the best of our knowledge, this is the first

example of N–H amination using metal–nitrene species.

However, the N–H amination of more nucleophilic aliphatic

amines remains a major challenge. Herein, we report the

N–H amination of -amino acid derivatives 1 or other ali-

phatic amines 2 using Rh(II)–nitrene to provide N-(arylsul-

fonyl)hydrazines 3 or 4 (Scheme 1b).

Initially, we performed the reactions of various N-alkyl-

-amino acid esters under previously reported conditions

using Rh2(HNCOCF3)4 (4 mol%) and (tosylimino)-2,4,6-

Figure 1  Natural products and pharmaceuticals containing N–N bond
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trimethylphenyliodinane (TsN=IMes, 5a) in CH2Cl2 (0.025

M),12 and found that 1-aminocyclopropanecarboxylate 1a

provided the desired -hydrazino acid 3aa in 51% yield (Ta-

ble 1, entry 1).13 The performance of iminoiodinanes 5b–d

bearing various arylsulfonyl groups on the nitrogen atom

was also investigated (entries 2–4). Compared with

TsN=IMes 5a (entry 1), the use of pNsN=IMes 5b dimin-

ished the product yield (entry 2). In contrast, introduction

of the electron-donating methoxy group into the arylsulfo-

nyl moiety significantly improved the product yield (entry

3), and product 3ad was obtained in 88% yield by exploiting

3,4-(MeO)2C6H3SO2N=IMes 5d (entry 4). With the use of 5d,

high product yields were maintained with 2 mol% loading

of the catalyst (entry 5), and commercially available

Rh2(esp)2 provided virtually the same result as Rh2(HN-

COCF3)4 (entry 6). Similar to our previous work, increasing

the concentration of 1a to 0.1 M led to a noticeable drop in

the product yields (entry 7).14 The solvent survey revealed

that the use of CF3C6H5 instead of CH2Cl2 further improved

the yield of 3ad to 94% (entries 8–11). The reaction per-

formed on 1 mmol scale led to only a slight decrease in the

product yield.15

With the optimized conditions at hand, we then investi-

gated the influence of the substituent on the amino group

(Table 2). The introduction of either the electron-donating

or electron-withdrawing groups into the 2- or 4-position of

the benzyl group had little impact on the product yield (en-

tries 1–4). In addition to the N-benzyl substrates, N-allyl

substrate 1f uneventfully furnished product 3f (entry 5).

The bulky N-isopropyl group led to a significant decrease in

the product yield (entry 6). Primary amine 1h also resulted

in hydrazine 3h as the sole product in 47% yield (entry 7). In

contrast to aromatic amines, the formation of diazene 6 by

in situ oxidation for 3h was not observed.12

Cyclic -amino acid derivatives 1i and 1j bearing cy-

clobutene and cyclopentane rings underwent N–H amina-

tion as well as 1-aminocyclopropanecarboxylates, and 3i

and 3j were obtained in 86% and 85% yields, respectively

(Scheme 2). A high yield was maintained with acyclic sub-

strate 1k. Notably, common -amino acid derivatives, such

as alanine 1l, tyrosine 1m, and glycine 1n, were also suit-

able substrates for this transformation, and -hydrazino ac-

ids 3l–n were obtained in 71–79% yields. In contrast, pro-

line methyl ester (1o) failed to give the desired product 3o.

The reactions of amines other than -amino acids were

also examined (Scheme 3). Unfortunately, dibenzylamine

(2a) did not provide the desired N–H insertion product 4a.

However, the introduction of one or two methyl groups into

Scheme 1  (a) Rh(II)-catalyzed synthesis of N-aryl-N′-tosyldiazenes 
from aromatic primary amines. (b) Rh(II)-catalyzed N–H amination of 
aliphatic amines; esp = ,,,-tetramethyl-1,3-benzenedipropanoate, 
Ts = tosyl, Mes = 2,4,6-trimethylphenyl.
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Table 1  Optimization of Reaction Conditions for N–H Amination of 1-
Aminocyclopropanecarboxylate 1aa

Entry Rh(II) catalyst (loading 
mol%)

Iminoiodinane Solvent Yield (%)b

1 Rh2(HNCOCF3)4 (4) 5a CH2Cl2 3aa 51

2 Rh2(HNCOCF3)4 (4) 5b CH2Cl2 3ab 30

3 Rh2(HNCOCF3)4 (4) 5c CH2Cl2 3ac 84

4 Rh2(HNCOCF3)4 (4) 5d CH2Cl2 3ad 88

5 Rh2(HNCOCF3)4 (2) 5d CH2Cl2 3ad 92

6 Rh2(esp)2 (2) 5d CH2Cl2 3ad 89

7 Rh2(esp)2 (2) 5d CH2Cl2c 3ad 71

8 Rh2(esp)2 (2) 5d MeCN 3ad 23

9 Rh2(esp)2 (2) 5d Et2O 3ad 67

10 Rh2(esp)2 (2) 5d toluene 3ad 88

11 Rh2(esp)2 (2) 5d CF3C6H5 3ad 94 
(81)d

a Reaction conditions: 1a (0.10 mmol), Rh(II) catalyst (2–4 mol%), iminoio-
dinane (0.20 mmol), and MS 4 Å (powder, 40 mg) in the indicated solvent 
(4.0 mL).
b Isolated yields.
c Concentration: 0.1 M.
d Yield in parenthesis refers to the yield obtained in 1 mmol scale; Ts = tosyl, 
pNs = p-nosyl, Mbs = 4-methoxyphenylsulfonyl.
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the -position of 2a significantly improved the outcomes,

and 4b and 4c were obtained in 54% and 58% yields, respec-

tively. It was speculated that this noticeable difference be-

tween 2a and 2b,c was due to catalyst poisoning by the

highly nucleophilic 2a.11

To validate this hypothesis, the N–H amination of 1a in

the presence of 2a was performed (Table 3). The addition of

only 0.2 equiv of 2a led to a decrease in the yield of 3ad

from 94% (Table 1, entry 11) to 36%, along with a 30% recov-

ery of the starting 1a. Furthermore, the quantitative

amount of 2a completely inhibited the reaction of 1a. Con-

versely, with 20 mol% of Rh2(esp)2, the N–H amination of 1a

proceeded even in the presence of a quantitative amount of

2a. These results clearly indicate catalyst poisoning by 2a. A

plausible reaction mechanism is illustrated in Scheme 4.

With amino acid derivatives 1 or bulky amines 2b,c, Rh(II)–

nitrene species generated from Rh2(esp)2 and iminoio-

dinane 5d undergo nucleophilic addition of the substrates

to form N–N bonds. Proton transfer from intermediate I fur-

nishes N–H amination products 3 or 4. Meanwhile, 2a inter-

feres with the generation of Rh(II)–nitrene through the for-

mation of an inactive complex by coordination with

Rh2(esp)2.

In summary, we developed a Rh(II)-catalyzed N–N

bond-forming reaction of amino acid derivatives or aliphat-

ic amines to provide hydrazine derivatives through the

Table 2  N–H Amination of N-Alkyl-1-aminocyclopropanecarboxylates 
1b–h

Entry R Yield (%)a

1 4-MeOC6H4CH2 3b 90

2 4-O2NC6H4CH2 3c 87

3 4-BrC6H4CH2 3d 95

4 2-BrC6H4CH2 3e 85

5 allyl 3f 86

6 i-Pr 3g 59

7 H 3h 47b

a Isolated yield.
b Diazene 6 was not obtained.
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combined use of Rh2(esp)2 and iminoiodinane bearing (3,4-

dimethoxyphenyl)sulfonyl group on the nitrogen atom.

This is the first report of N–H amination of aliphatic amines

with metal–nitrene species. Further studies on the influ-

ence of the arylsulfonyl group on the reactivity of Rh(II)–ni-

trene and the removal of (3,4-dimethoxyphenyl)sulfonyl

group are currently in progress.
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3.69 (s, 3 H, OCH3), 3.90 (q, J = 7.2 Hz, 2 H, CH2CH3), 4.41 (s, 2 H,

ArCH2), 6.60 (dd, J = 8.4, 2.6 Hz, 1 H, ArH), 6.62 (d, J = 2.6 Hz, 1 H,

ArH), 6.77 (d, J = 8.4 Hz, 1 H, ArH), 7.02 (d, J = 8.0 Hz, 2 H, ArH),

7.09–7.11 (m, 3 H, NH and ArH). 13C NMR (100 MHz, CD3CN, 60

°C):  = 14.6 (CH3), 20.1 (CH2), 21.3 (CH3), 43.6 (C), 54.8 (CH2),

56.9 (CH3), 57.2 (CH3), 62.5 (CH2), 109.9 (CH), 113.9 (CH), 116.8

(CH), 130.1 (CH), 130.5 (CH) 131.9 (C), 135.2 (C), 138.8 (C),

148.8 (C), 151.0 (C), 174.0 (C=O). HRMS (EI): m/z calcd for

C22H28N2O6S [M]+: 448.1668; found: 448.1666.
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