Dipeptide Synthesis by Two-Component Organocatalysis

Significance: Catalytic peptide-bond formation is an important process in providing effective and economical systems for use in the industrial and pharmaceutical fields. The authors have developed a redox organocatalyst system for the formation of peptide bonds.

Comment: The two-component catalytic process provides versatility in dipeptide syntheses. The authors propose a mechanism consisting of a reductant-driven phosphine cycle and an oxidant-driven selenium cycle.

Selected examples:

- Boc$_{(R)}$N$_{HC(O)_{(t-Bu)}}$ 94% yielda
- Boc$_{(R)}$N$_{HC(O)_{(t-Bu)}}$ 84% yielda
- Boc$_{(R)}$N$_{HC(O)_{(t-Bu)}}$ 95% yield
- Boc$_{(R)}$N$_{HC(O)_{(t-Bu)}}$ 91% yield
- Boc$_{(R)}$N$_{HC(O)_{(t-Bu)}}$ 94% yield
- Boc$_{(R)}$N$_{HC(O)_{(t-Bu)}}$ 93% yield

a3 × 0.5 equiv of PhSiH$_3$ was used.

Proposed mechanism:

Category: Peptide Chemistry

Key words: organocatalysis, redox catalysis, peptide bond formation, seleno esters