Cyclopeptide Synthesis by Ring-Closing Metathesis

Selected examples:

A:
- Boc-Leu$_3$N
- Boc$_2$N
- CO$_2$Me
- conditions A: 96% yield, $E/Z = 24:1$
- conditions B: 76% yield, $E/Z = 6:1$

B:
- Boc$_2$N
- Boc$_2$N
- CO$_2$Me
- conditions A: 53% yield, $E/Z = 1:2.2$
- conditions B: 73% yield, $E/Z = 1:1.1$

C:
- Boc$_2$N
- Boc$_2$N
- CO$_2$Me
- conditions A: 75% yield, $E/Z = 26:1$
- conditions B: 98% yield, $E/Z = 40:1$
- 4CH$_2$Cl$_2$ was used as solvent.

D:
- Boc$_2$N
- Boc$_2$N
- CO$_2$Me
- conditions A: 94% yield, $E/Z = 1:1$
- conditions B: 99% yield, $E/Z = 1:3.1$

E:
- Boc$_2$N
- Boc$_2$N
- Val$_3$N
- CO$_2$Me
- conditions A: 95% yield, $E/Z = 16:1$
- conditions B: 95% yield, $E/Z = 1:1.1$

Significance: Cyclopeptides are key moieties widely present in a number of bioactive products, including some with clinical applications. The authors developed ring-closing metathesis in α-helical stapled peptides.

Comment: The ring-closing metatheses of α-helical stapled peptides containing leucine or valine residues proceeded in moderate to high yields, generally in an E-selective manner.