
Engineering an Efficient and Enantioselective Enzyme for the Morita–Baylis–Hillman Reaction

Engineered Biocatalyst Permits Enantioselective Morita–Baylis–Hillman Reaction

Significance: Lovelock, Green, and co-workers disclose a biocatalytic enantioselective Morita–Baylis–Hillman (MBH) reaction between enones and aromatic aldehydes catalyzed by engineered variants of a hydrolase (BH32.14 and BH32.8). Mechanistic studies suggest a histidine residue serving as the nucleophile that covalently binds the activated alkene. Multiple subsequently formed oxyanion intermediates are stabilized by a conformationally flexible arginine. The products of the C–C bond-forming reaction are obtained in moderate to high yields and with poor to excellent enantioselectivities.

Comment: By combining computational design with directed evolution, the authors developed an enzyme-engineering protocol that permitted the development of two nonnatural biocatalysts for the MBH reaction. While the less-evolved BH32.8 tolerates a broader range of substrates, the highly specialized BH32.14 operates more efficiently and enantioselectively. Based on DFT calculations, a catalytic mechanism is proposed that exhibits strong similarities to small-molecule systems (see for example: G. W. Amarante et al. Chem. Eur. J. 2009, 15, 12460).

SYNFACTS Contributors: Benjamin List, Wencke Leinung

SYNFACTS 02032022, 18(03), 0307 Published online: 16.02.2022 1861-19581861-194X

DOI: 10.1055/s-0041-1737540; Reg-No.: B00522SF

© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany