Synlett 2022; 33(02): 182-186
DOI: 10.1055/s-0041-1737293
letter

One-Pot, Catalyst-Free Synthesis of Nitriles from Aldehydes Using Aminating Reagent MsONH3OTf

Tharcisse Gatera
,
Daijiao Zhuang
,
Rulong Yan
This work was supported by National Natural Science Foundation of China (Grant Number 21672086).


Abstract

An eco-friendly protocol to synthesize nitriles from their corresponding aromatic and aliphatic aldehydes in excellent yields has been developed. This is a catalyst-free protocol which employs an aminating reagent (MsONH3OTf) under mild conditions. The hydroxylamine triflic acid salts (MsONH3OTf) acted as the N source for this protocol. Our protocol proved to be easy to perform and presented good functional group tolerance.

Supporting Information



Publication History

Received: 07 October 2021

Accepted after revision: 09 November 2021

Article published online:
26 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Rappoport Z. The Chemistry of the Cyano Group . Wiley Interscience; London: 1970
    • 1b Comprehensive Organic Transformations: A Guide to Functional Group Preparations. Larock RC. Wiley; New York: 1989
    • 1c Liu Y, Yang K, Ge H. Chem. Sci. 2016;  7: 2804
    • 2a Kleemann A, Engel J, Kustschner B, Reichert D. Pharmaceutical Substances: Synthesis, Patents, Applications, 4th ed. Thieme; Stuttgart: 2001
    • 2b An XD, Yu S. Org. Lett. 2015; 17: 5064
    • 3a Brunton L, Chabner B, Knollman B. Goodman and Gilman’s The Pharmacological Basis of Therapeutics . MacGraw-Hill; New York: 2010
    • 3b Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 3c Jasperse CP, Curran DP, Fevig TL. Chem. Rev. 1991; 91: 1237
    • 4a Sandmeyer T. Ber. Dtsch. Chem. Ges. 1884; 17: 2650
    • 4b Sandmeyer T. Ber. Dtsch. Chem. Ges. 1885; 18: 1492
    • 4c Hodgson HH. Chem. Rev. 1947; 40: 251
    • 5a Lindley J. Tetrahedron 1984; 40: 1433
    • 5b Bacon RG. R, Hill HA. O. J. Chem. Soc. 1964; 1097
    • 5c Von Braun J, Manz G. Liebigs Ann. Chem. 1931; 488: 111
    • 5d Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. B 1919; 52: 1749
    • 5e Wang DP, Kuang LP, Li ZW, Ding K. Synlett 2008; 69
    • 5f Pradal A, Evano G. Chem. Commun. 2014; 50: 11907
    • 6a Mowry DT. Chem. Rev. 1948; 42: 189
    • 6b Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 6c Nasrollahzadeh M, Jaleh B, Fakhri P, Zahraei A, Ghadery E. RSC Adv. 2015; 5: 2785
    • 7a Hatsuda M, Seki M. Tetrahedron 2005; 61: 9908
    • 7b Erman MB, Snow JW, Williams MJ. Tetrahedron Lett. 2000; 41: 6749
    • 7c Iida S, Togo H. Tetrahedron 2007; 63: 8274
    • 7d Wu Q, Luo Y, Lei A, You J. J. Am. Chem. Soc. 2016; 138: 2885
    • 8a Nakajima N, Saito M, Ubukata M. Tetrahedron 2002; 58: 3561
    • 8b Zhou S, Junge K, Addis D, Das S, Beller MA. Org. Lett. 2009; 11: 2461
  • 10 Kelly CB, Lambert KM, Mercadante MA, Ovian JM, Bailey WF, Leadbeater NE. Angew. Chem. Int. Ed. 2015; 54: 4241
  • 11 Wrobleski A, Coombs TC, Huh CW, Li S.-W, Aubé J. Org. React. 2012; 78: 1
  • 12 Fang C, Li M, Hu X, Mo W, Hu B, Sun N, Jin L, Shen Z. Adv. Synth. Catal. 2016; 358: 1157
    • 13a Jiang H, Huang H, Cao H, Qi C. Org. Lett. 2010; 12: 5561
    • 13b Rajender Reddy K, Uma MaheswariC, Venkateshwar M, Prashanthi S, Lakshmi Kantam M. Tetrahedron Lett. 2009; 50: 2050
    • 14a Nandi J, Leadbeater NE. Org. Biomol. Chem. 2019; 17: 9182
    • 14b Li Z, Wang T, Qi X, Yang Q, Gao L, Zhang D, Zhao X, Wang Y. RSC Adv. 2019; 9: 17631
    • 14c Oishi T, Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2009; 48: 6286
    • 15a Motiwala HF, Yin Q, Aubé J. Molecules 2016; 21: 45
    • 15b Quinn DJ, Haun GJ, Moura-Letts G. Tetrahedron Lett. 2016; 57: 3844
    • 15c Rokade BV, Prabhu KR. J. Org. Chem. 2012; 77: 5364
    • 15d Yin WY, Wang CM, Huang Y. Org. Lett. 2013; 15: 1850
    • 15e Qu Q, Gao X, Gao J, Yuan G. Sci. China Chem. 2015; 58: 747
    • 16a Legnani L, Prina Cerai G, Morandi B. ACS Catal. 2016; 6: 8162
    • 16b Legnani L, Morandi B. Angew. Chem. Int. Ed. 2016; 55: 2248
    • 16c Liu J, Wu K, Shen T, Liang Y, Zou M, Zhu Y, Li X, Li X, Jiao N. Chem. Eur. J. 2017; 23: 563
    • 16d D’Amato EM, Borgel J, Ritter T. Chem. Sci. 2019; 10: 2424
    • 16e Makai S, Falk E, Morandi B. J. Am. Chem. Soc. 2020; 142: 21548
    • 16f Chatterjee S, Makai SMorandi B. Angew. Chem. Int. Ed. 2021; 60: 758
    • 16g Legnani L, Prina-Cerai G, Delcaillau T, Willems S, Morandi B. Science 2018; 362: 434
  • 17 Yu H, Li Z, Bolm C. Angew. Chem. Int. Ed. 2018; 57: 324
  • 18 General Procedure for the Synthesis of Nitriles from AldehydesA solution of aldehyde (0.4 mmol) and MsONH3OTf (0.6 mmol, 1.5 equiv) was mixed in MeCN (4 mL), then the reaction mixture was placed in a preheated oil bath and stirred at 60 °C for the mentioned period while checking the reaction progress (TLC monitored). After completion, the solvent was removed by rotary evaporator, and the crude product was purified by column chromatography on silica gel, using petroleum ether/EtOAc (10:1) as eluent to afford the pure nitriles. The synthesis of both aliphatic and aromatic nitriles obeyed the above workup procedure, except for the compound 2-aminobenzonitrile (2u). After completion, the reaction mixture was extracted with EtOAc and washed with saturated K2CO3 solution, the organic layers were combined and dried with anhydrous Na2SO4. The solvent was evaporated under reduced pressure, and the crude product was purified by column chromatography on silica gel, using petroleum ether/EtOAc (10:1) as eluent to afford 2u.Benzonitrile (2a)Colorless oil (37.1 mg, 90% yield). 1H NMR (400 MHz, CDCl3): δ = 7.66–7.59 (m, 3 H), 7.50–7.46 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 132.6, 132.0, 129.0, 118.7, 112.2. HRMS: m/z calcd for C7H6N [M + H]+: 104.0495; found: 104.0491.2-Aminobenzonitrile (2u)Colorless solid (34.0 mg, 72% yield), mp 45–47 °C. 1H NMR (400 MHz, CDCl3): δ = 7.38–7.30 (m, 2 H), 6.75–6.71(m, 2 H), 4.45 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 149.6, 133.9, 132.2, 117.8, 117.6, 115.1, 95.7. HRMS: m/z calcd for C7H7N2 [M + H]+: 119.0604; found: 119.0601.Heptanenitrile (4a)Colorless oil (32.0 mg, 72% yield). 1H NMR (400 MHz, CDCl3): δ = 2.36–2.33 (m, 2 H), 1.70–1.62 (m, 2 H), 1.49–1.42 (m, 2 H), 1.34–1.28 (m, 4 H), 0.92–0.89 (m, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 119.9, 30.9, 28.3, 25.3, 22.3, 17.1, 13.9 ppm. HRMS: m/z calcd for C7H14N [M + H]+: 112.1121; found: 112.1117.
    • 19a Hyuodo K, Togashi K, Oishi N, Hasegawa G, Uchida K. Org. Lett. 2017; 19: 3005
    • 19b Fang WY, Qin HL. J. Org. Chem. 2019; 84: 5803
    • 19c Verma F, Shukla P, Bhardiya SR, Singh M, Rai A, Rai VK. Catal. Commun. 2019; 119: 76
    • 19d Mudshinge SR, Potnis CS, Xu B, Hammond GB. Green Chem. 2020; 22: 4161
    • 19e Cheewawisuttichai T, Hurst RD, Brichacek M. Carbohydr. Res. 2021; 502: 108282
    • 19f Gurjar J, Bater J, Fokin VV. Chem. Eur. J. 2019; 25: 1906
    • 19g Laulhé S, Gori SS, Nantz MH. J. Org. Chem. 2012; 77: 9334