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The latest formidablehazard to global health is the advancing
outbreakof severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the novel virus responsible for coronavirus
disease-19 (COVID-19), identified in December 2019 in
Wuhan, China. Three months after the advent of COVID-19,
the Director General of the World Health Organization
announced that COVID-19 had become a global pandemic.1

At the time of writing, this outbreak is the gravest adversity
worldwide, with nearly 200 million infected patients and
more than 4 million deaths as of July 27, 2021.2

COVID-19 shows a broad spectrum of clinical manifesta-
tions, varying from asymptomatic, or mild, to upper respira-
tory tract signs, multiple organ dysfunction, cytokine storm,
thrombotic complications manifested in most severe cases,

and finally death.3 Fever, dry cough, dyspnea, and myalgia
are the most common manifestations, followed by viral
pneumonia and type 1 respiratory failure in 10 to 15% of
cases. Around a third of patients require intensive care unit
(ICU) admission for acute respiratory distress syndrome
(ARDS), occasionally with multiorgan failure.4–6

SARS-CoV-2 mostly uses the body’s angiotensin-convert-
ing enzyme-2 (ACE-2) as a receptor for entering thehost cells.
In addition to ACE-2, SARS-CoV-2 may require transmem-
brane protease serine 2 (TMPRSS2) and basigin (CD147) to
infect cells, as well as entering the cells by a microparticle-
bearing pathway.7,8 There is also some evidence indicating
that coronaviruses tend to interact with acetylated sialic acid
residues presented copiously on the membrane proteins of
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Abstract The cardinal pathology of coronavirus disease 2019 (COVID-19) is a primary infection of
pulmonary tract cells by severe acute respiratory syndrome coronavirus 2, provoking a
local inflammatory response, often accompanied by cytokine storm and acute
respiratory distress syndrome, especially in patients with severe disease. Systemic
propagation of the disease may associate with thrombotic events, including deep vein
thrombosis, pulmonary embolism, and thrombotic microangiopathy, which are im-
portant causes of morbidity and mortality in patients with COVID-19. This narrative
review describes current knowledge of the pathophysiological mechanisms of
COVID-19-associated coagulopathy, with focus on prothrombotic changes in hemo-
static mediators, including plasma levels of clotting factors, natural anticoagulants,
components of fibrinolytic system, and platelets. It will also highlight the central role of
endothelial cells in COVID-19-associated coagulopathy. This narrative review discusses
also potential therapeutic strategies for managing thrombotic complications. Aware-
ness by medical experts of contributors to the pathogenesis of thrombotic events in
COVID-19 is imperative to develop therapeutics not limited to regular anticoagulants.
Instituting cooperation among medical personnel and researchers may lessen this
novel virus’ impact now, and in the event of recurrence.
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megakaryocytes and endothelial cells.9,10 This narrative
reviewdealswithwhat is known about COVID-19-associated
coagulopathy, focusing on current knowledge of alterations
in blood coagulation and fibrinolysis mediators following
SARS-CoV-2 infection and their association with disease
mortality, especially in severely affected patients.

COVID-19 as a Novel Risk Factor of
Thrombosis

A plethora of evidence, retrieved from a large variety of
studies covering this pandemic, has highlighted a large
incidence of hemostatic derangements in the form of hyper-
coagulable and hypofibrinolytic states, mostly in critically ill
patients receiving intensive care support.11–14 The virus does
not seem to have innate prothrombotic effects; instead, the
hemostatic disturbances aremost likely a consequence of the
profound hyperinflammatory response and endotheliop-
athy, even if a direct platelet-activating effect cannot be ruled
out.15,16 The prime etiology of morbidity and mortality in
these patients is the synchronized activation of inflammato-
ry responses and coagulation pathways (known as throm-
boinflammation).17,18 The early clinical findings reported
from Wuhan, China, indicated that patients with the severe
form of disease suffered from acute lung disturbance and
hypoxia.19–22 Laboratory findings also showed that a large
number of hospitalized patients have plasma hypercoagula-
bility with significantly high levels of D-dimer, and mild
prolongation of prothrombin time (PT) with slight thrombo-
cytopenia.23,24 The complementary reports fromother coun-
tries demonstrated that extremely ill patients receiving
intensive care support experienced thrombotic events, in-
cluding deep vein thrombosis (DVT) and pulmonary embo-
lism (PE).25–30 Autopsy findings corroborated these findings,
with reports of deteriorating PE following DVT in the lower
extremities, and frequent reports of platelet-rich clots in the
small arteries and capillaries of the lung.31–35 PEhas been the
most common thrombotic event, followed by DVT and
arterial thrombosis.36,37

Fundamental aspects of the underlying mechanisms of
COVID-19-associated hemostatic disorders have not been
precisely characterized. However, it is well appreciated that
this condition results from a severe inflammatory response
to the virus, one that is conceptualized in the literature as
“thromboinflammation.”17 Thromboinflammation was also
confirmed in SARS and Middle East respiratory syndrome
(MERS), both of which are caused by coronaviruses.38 Since
the respiratory tract is the primary gateway for coronavirus,
the inflammatory process initially involves the alveoli, pro-
gresses to cytokine storm, and triggers a localized hemostat-
ic dysfunction with ensuing formation of microthrombi in
the pulmonary vasculature. Autopsy findings support the
notion of lung-originating coagulopathy in COVID-19
patients.32,39 In patients with systemic inflammatory re-
sponse syndrome, consequent to more severe illness, this
condition might be followed by a generalized coagulopathy
in the gastrointestinal tract or lower extremity, or as coro-
nary or cerebrovascular ischemia.40–43 Based on the high

potential risk of thrombotic events, interim guidance from
the International Society on Thrombosis and Haemostasis
recommends thromboprophylaxis with heparin in all hospi-
talized patients, as long as anticoagulation does not impose
additional bleeding risk.35,44 When the diagnosis of throm-
boembolism is confirmed, anticoagulation with a therapeu-
tic dose is recommended. However, major thrombotic events
still occur, even in patients undergoing anticoagulation.

Pathophysiology of COVID-19-Associated
Coagulopathy

Generalized infection, similar to what is seen in bacteria- or
virus-induced sepsis, causes systemic inflammation and
activation of clotting pathways, which can lead to sepsis-
induced coagulopathy, a state known as thromboinflamma-
tion.45 Vascular endothelial cells seem to be a hotspot in the
cross-talk between inflammation and coagulation. The col-
laboration between coagulation pathways and endothelial
cells is crucial for adequate hemostasis.46 ARDS, frequently
seen following sepsis-induced multiorgan failure, is indicat-
ed by disordered endothelial-cell integrity and alveolar
damage, with fibrin being deposited inside the pulmonary
vasculature and alveolar cavity.47,48 In a SARS-CoV-2 infec-
tion, endotheliopathy primarily occurs in the lung; respira-
tory endothelial cells are directly infected by the virus via
interaction of its spike glycoprotein and the host ACE-2
receptor, which is copiously expressed on endothelial cells.42

After the virus has entered the respiratory tract cells, innate
immune cells present pattern recognition receptors (PRRs) to
identify exogenous pathogen-associated molecular pat-
terns.49 Endogenous damage-associated molecular patterns
created by damaged cells are also consistently recognized by
PRRs. All three factors of the old concept of Virchow’s triad
seem to be involved in the pathogenesis of thrombotic events
in COVID-19 (►Fig. 1).

Pathophysiological mechanisms of COVID-19-associated
coagulopathy comprise multiple systems and their interac-
tions (►Fig. 2). Endothelial damage causes subendothelial
collagen exposure and tissue factor (TF) decryption. TF
release into the plasma along with von Willebrand factor
(VWF) leads to activation and propagation of the coagulation
cascade and platelet adhesion pathways.50,51 Circulatory
markers of endothelial damage, including VWF, soluble
thrombomodulin, plasminogen activator inhibitor-1
(PAI-1), and angiopoietin 2, have been correlated to in-
creasedmortality in patients with COVID-19.52–54 Therefore,
innate inflammatory response and coagulation-cascade ac-
tivation are triggered primarily in the lung and create local-
ized microthrombi in the alveolar vasculature, which are
generalized in the severe form of the disease. Inflammatory
cytokines, as interleukin 6 (IL-6) and multiple acute-phase
reactants, can cause endotheliitis. Alternative- and lectin-
complement pathway activation also has been reported to
exacerbate inflammation and endotheliitis. The renin–aldo-
sterone–angiotensin system (RAAS) is involved through the
interaction of ACE2, in host cells, and the virus spike pro-
tein.55Moreover, angiotensin II upregulates PAI-1 expression
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in endothelial cells,56–58 and the release of PAI-1 from their
α-granules.59 Thus, deregulated RAAS may create a pro-
thrombotic condition in patients by increasing PAI-1 levels.
The contact system activation and the kallikrein–kinin
systems are incorporated in the pathophysiology of
COVID-19-associated coagulopathy and hyperinflamma-
tion.60,61 Negatively charged surfaces such as nucleic acids,
heparin, polyphosphate compounds, activated platelets,
neutrophil extracellular traps, and artificial surfaces could
localize factor XII (FXII), plasma prekallikrein (PK), and high-
molecular-weight kininogen (HMWK) close together, where-
upon reciprocal activation of FXII and PK occurs.62 FXIIa
triggers the intrinsic coagulation pathway and kallikrein

drives inflammation by cleaving HMWK to bradykinin (BK)
causing consequent vascular permeability.62 An additional
significant contributing mechanism to the coagulopathy is
severe hypoxia due to COVID-19-associated lung injury.63

Under severe hypoxic conditions, hypoxia-inducible factor-1
(HIF-1) upregulates PAI-1 and TF while downregulating
protein S64–66 (►Fig. 2).

HIF-2 also drives PAI-1 and suppresses TF pathway
inhibitor.67,68 Hypoxia also suppresses thrombomodulin
expression on endothelial cells, with subsequent anti-
thrombin inefficiency.69–71 One of the notable explanations
of anticoagulation inefficiency with heparin, in the man-
agement of COVID-19 patients with thrombosis, may be the
fact that hypoxia induces heparanase activity.72 Obesity is
another risk factor of hypercoagulability, as obese patients
have shown hypercoagulable and hypofibrinolytic changes,
including elevated levels of FVII, FVIII, VWF, TF, fibrinogen,
PAI-1, and thrombin-activatable fibrinolysis inhibitor
(TAFI).73–75 A role for lupus anticoagulant and antiphos-
pholipid antibodies has been suggested for pathogenesis of
COVID-19-associated coagulopathy.52,76–80 In severely
infected patients, immobility under conditions of quaran-
tine or hospitalization is another predisposing factor of
thrombosis.81,82 Modification of the equilibrium between
clot formation and degradation in favor of hypercoagulabil-
ity and hypofibrinolysis, impaired endothelial function,
platelet hyperactivation, and excessive immune response
are emerging as major contributors to the thrombotic
complications. Thus, using a multipurposed therapeutic
approach beyond the regular anticoagulants can better
prepare for fighting the disease (►Table 1). Of all proposed
pathophysiological mechanisms of COVID-19-associated
coagulopathy, this review will focus on prothrombotic
blood coagulation and fibrinolytic changes in patients se-
verely infected with SARS-CoV-2.

Clotting Factors

Increased levels of plasma clotting factors are reflective of
hypercoagulability in COVID-19 patients. There are several
studies regarding changes in the plasma levels of their
clotting factors.Most reported results on levels of fibrinogen,
VWFantigen, and factor VIII (FVIII) activity. A study assessing
24 patients admitted to the ICU showed increased fibrinogen
levels in all patients, markedly increased FVIII activity (up to
460 U/dL), and VWF antigen in 11 (48%) patients.83 While
these findings were not consistent with acute disseminated
intravascular coagulation (DIC), they supported the associa-
tion of hypercoagulabilitywith inflammation.83A case series
of 10 severe COVID-19 cases showed a marked increase in
FVIII activity and plasma fibrinogen concentration, but none
developed symptomatic venous thromboembolism (VTE).84

Significant immunohistochemical hyper-expression of FVIII
has been highlighted in an autopsy study on lung specimens
of two patients.85 Another study, on 102 patients, indicated
significant increases in plasma levels of fibrinogen, VWF, and
FVIII in those needing respiratory support, compared with
those with minimal or no respiratory support.86

Fig. 1 Pathogenesis of COVID-19-associated coagulopathy. Attachment
and entrance of SARS-Cov-2 virus by endothelial’s ACE-2 receptor causes
endotheliitis. Immune system hyperactivation, including alternative and
lectin complement pathway activation, release of acute-phase reactants
and cytokine storm further induce endotheliitis. Kinin–kallikrein system
activation, with endpoint product of bradykinin, results in vasodilation and
vascular permeability, and subsequent edema in many organs, as well as
inflammation. Pulmonary occlusive microthrombosis decelerates micro-
circulation in the lung. Immobility follows hospitalization and quarantine.
Elevated clotting factors, presence of lupus anticoagulant, reduced natural
anticoagulants, along with fibrinolysis shutdown, create a hypercoagulable
environment. In addition to inflammation and heparinization resistance via
induction of IL-6 and heparanase respectively, hypoxia potentiates hyper-
coagulable and hypofibrinolytic conditions. Contact system activation
occurs via negatively charged natural or artificial materials. The Renin–
aldosterone–angiotensin system further potentiates the hypofibrinolytic
state. Pathophysiological platelet hyperactivation includes elevated
microvesicle, granule, cytokine, and chemokine release. Excretion of poly-
phosphate (polyP) compounds by activated platelet leads to activation of
FXII. ACE-2, angiotensin-converting enzyme 2; ADAMTS-13, a disintegrin
andmetalloprotease with a thrombospondin type 1motif, member 13; AT,
antithrombin; F, factor; IL-6, interleukin-6; NETs, neutrophil extracellular
traps; PAI-1, plasminogen activator inhibitor-1; PC, protein C; PS, protein S;
SARS-Cov-2, severe acute respiratory syndrome coronavirus 2; TAFI,
thrombin-activatable fibrinolysis inhibitor; TF, tissue factor; TM, thrombo-
modulin; tPA, tissue plasminogen activator; uPA, urokinase plasminogen
activator; VWF, von Willebrand factor.
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Certain alveolar endothelial cells produce FVIII, a pro-
thrombotic acute-phase reactant and marker of endothelial
cell activation, as are fibrinogen and VWF, all three of which
are frequently reported to be increased in the plasma. These
data may support the notion that endotheliitis and subse-
quent pulmonary microthrombosis originate in the alveoli
and are caused by SARS-CoV-2.87,88 Moreover, relatively low

levels of ADAMTS13 (a disintegrin and metalloprotease with
a thrombospondin type 1 motif, member 13) in plasma in
association with the high VWF antigen may lead to micro-
angiopathic changes in critically ill patients.89 von Meijen-
feldt and colleagues compared hemostatic changes during
hospitalization and at their follow-up 4 months after dis-
charge. Factor V (FV), VWF, and fibrinogen were increased in

Fig. 2 COVID-19 pathogenesis. (A) In the absence of damage or pathogen, the endothelial cells and platelets maintain their resting modes and
stay away from each other, hemostasis continues unaffected. Resting endothelial cells produce natural anti-inflammatories and anticoagulants,
including nitric oxide (NO), prostaglandin I2 (PGI2), activated protein C (APC), thrombomodulin (TM), antithrombin (AT), and tissue factor
pathway inhibitor (TFPI). The angiotensin-converting enzyme 2 (ACE2) receptor on the endothelial cell surface is typically involved in the
unimpaired renin–aldosterone–angiotensin system through converting angiotensin II to angiotensin 1–9 and angiotensin 1–7, thus preventing
the accumulation of angiotensin II. (B) In the presence of vascular damage, physiological hemostatic mechanisms are triggered until blood loss is
completely stopped and the clot is dissolved. (C) Direct invasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of the
endothelial cell, via the ACE-2 receptor, causes activation of the endothelium, characterized by elevated circulatory levels of von Willebrand
factor (VWF), factor VIII (FVIII), soluble TM, and plasminogen activator inhibitor 1 (PAI1). The inflammatory process related to COVID-19 that
augments immune cell responses, production of inflammatory cytokines (such as IL-1β, IL-6, and TNF), and activation of the complement
pathway further influences the endothelium andmediates endothelial damage and dysfunction. Inflammation reduces the bioavailability of PGI2
and NO, leading to endothelial damage. In the hyperinflammatory and hypoxic condition, pathological hyperactivation of platelets and
coagulation cascades, combined with endothelial dysfunction, lead to thrombus formation. The contact system activation via negatively
charged surfaces, like polyphosphate (polyP) compounds, combined with kallikrein–kinin systems, accentuates the hypercoagulability and
inflammatory condition through the production of activated FXII (FXIIa) and bradykinin, respectively. The hypoxia-inducible factor-1 (HIF-1) and
-2 (HIF-2) upregulate PAI-1 and TF, as they downregulate the protein S gene (PROS1) and TFPI, leading to hypercoagulability and hypofibrinolysis.
The PAI1 levels are elevated by accumulated levels of circulatory angiotensin II when ACE2 is internalized, following SARS-CoV-2 infection, and
could not proteolyse the angiotensin II. The increased thrombin (Thr) generation drives thrombin-activatable fibrinolysis inhibitor (TAFI) to
suppress PAI1. Despite the increased profibrinolytic factors of tissue (tPA) and urokinase (uPA) plasminogen activators, overwhelming levels of
PAI1 and TAFI create the net result of fibrinolysis shutdown and lead to embolization of the platelet-rich fibrin clot. IL, interleukin; TNF, tissue
factor necrosis.
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patients during hospitalization, but normalized at the fol-
low-up. Factor II (prothrombin) (FII) was significantly elevat-
ed at follow-up, compared with control and hospitalization
levels. Thrombinography results showed considerably raised
thrombin-generating potential at follow-up, but were not
associated with elevated prothrombin. FVIII levels were
elevated during hospitalization and remained significantly
higher than levels found in healthy controls. This increase in
FVIII suggests a continued hypercoagulable state in survi-
vors.90 In a study on 20 critically ill patients admitted to ICU,
two groups were studied, those who died within 24hours
after coagulation-profile sampling (terminal-stage group)
and those who lived more than 3 days after sampling
(nonterminal-stage group). In both groups FVIII activity
was significantly higher than, and had approximately the
same values as, the normal range. Other clotting factor
activities including FII, FV, FVII, FIX, FX, FXI, and FXII
remained in the normal range in both patient groups. In
the terminal-stage group, FV and FVII activity was much
lower than that in the nonterminal group. However, FV and
FVII activities, confirmed by prolonged PT, were much lower
in the terminal-stage group than in the nonterminal group.91

In a cohort of 102 severely ill hospitalized patients there was

a marked elevation of FV activity (34–248 IU/dL, median
¼150) compared with the control group (22–161 IU/dL,
median¼105; p<0.001). FV activity was associated with
the rate of VTE. Patients with elevated FV activity (>150
IU/dL) experienced significantly higher rates of VTE than
those with FV activity �150 IU/dL (33 vs. 13%; p¼0.03). The
VTE ratewas lower among anticoagulated COVID-19 patients
(21%, n¼91 vs. 36%, n¼11) and those with increased FV
activity, (30%, n¼44 vs. 60%, n¼5) when compared with
nonanticoagulated. However, these differences were not
statistically significant. These findings do suggest that FV
deserves further investigation for VTE and anticoagulation
therapies. In the former study, fibrinogen and FVIII activity
were also significantly higher; FX activity was slightly (or
marginally) higher. Patients with concomitant increases in
FV and FVIII activity had higher VTE rates than those with
normal activity (p¼0.048).92 FXII is probably the most
involved, directly connected to the inflammatory responses
via the BK-forming kallikrein–kinin system. Bronchoalveolar
lavage fluids from 54 ARDS patients in a case–control study
revealed FXII to be upregulated, with higher levels in ARDS
fatalities, and was positively associated with tumor necrosis
factor-α levels.93 One of the autopsy findings has been the

Table 1 Major contributors to COVID-19 pathogenesis and their related potential therapeutic approaches

Pathology Laboratory features Potential therapeutics

Coagulopathy "D-dimer,
"Fibrinogen, factor VIII, von
Willebrand factor, tissue factor
"PAI-1 and tPA
"Clot lysis resistance
↓Natural anticoagulants
"Thrombin generation potential
"Plasma kallikrein

Heparin (prophylactic or therapeutic doses)
Fibrinolytic therapy with alteplase (tPA) or
nebulized recombinant t-PA
Wild-type activated protein C
Wild-type protein S
Recombinant antithrombin
Recombinant thrombomodulin
Plasma kallikrein inhibitors (lanadelumab and
ecallantide)

Endotheliopathy "Factor VIII and von Willebrand factor
Soluble thrombomodulin
"PAI-1
" Angiopoietin 2

Prostacyclin therapy (iloprost, epoprostenol,
and treprostinil)
Inhaled nitric oxide
Phosphodiesterase 3 inhibitors (dipyridamole
and cilostazol)

Thrombocytopathy Borderline thrombocytopenia
Platelet hyperactivation.

Prostacyclin therapy
Inhaled nitric oxide
Phosphodiesterase 3 inhibitors
Aspirin
P2Y 12 inhibitors

Excessive immune
response and inflammation

"Inflammatory markers (C- reactive protein,
erythrocyte sedimentation rate, and ferritin)
"Inflammatory cytokines (IL-1β, IL-6, and TNF-α)
Macrophage activation, complement
system, and NETosis
"Bradykinin

Dexamethasone
Tocilizumab (anti-IL-6)
Eculizumab (C5 blocker)
Anakinra (anti-IL-1β)
Plasma exchange to reduce cytokine storm
Prostacyclin therapy
Inhaled nitric oxide
Recombinant 3K3A-APC mutanta

Abbreviations: C5, complement component 5; COVID-19, coronavirus disease 2019; IL-1β, interleukin-1 β; IL-6, interleukin-6; NETosis, neutrophil
extracellular trap formation; P2Y 12, the adenosine diphosphate receptor on platelets; PAI-1, plasminogen activator inhibitor-1; TNF-α, tumor
necrosis factor α; tPA, tissue plasminogen activator.
aActivated protein C (APC) is a protease with anticoagulant and cytoprotective activities protecting cerebrovascular endothelium from ischemic
injury. 3K3A-APC, a modified APC, maintains its full cytoprotective and anti-inflammatory effects while it confers approximately 90% lower
anticoagulant activity than wild-type APC.
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accumulation of FXII in patients’ lung tissue, with immuno-
fluorescence analysis indicating FXII activation within the
respiratory vascular walls and in clot-rich alveolar cavities.
FXII is located at the central position of the contact activation
system, with pivotal roles in triggering inflammatory
responses, complement system, and coagulation cascade.
Hence, FXII could be considered a valuable pharmacological
target in the management of severely ill patients.62

Natural Anticoagulants

Protein S
Given the fact that protein S plays a dual role in antico-
agulation and immunosuppression, it is hypothesized that
a secondary deficiency of protein S, following SARS-CoV-2
infection, is strongly implicated in the underlying mecha-
nisms of COVID-19-associated coagulopathy and cytokine
storm. Unfortunately, in the context of COVID-19, there is
scant empirical research into protein S level changes over the
course of the disease. A study investigating the effect of
baseline protein S activity of 91 patients, with survival as the
main outcome, revealed protein S activity to be reduced in
65% of the patients; death was associatedwith lower activity
of protein S (median 42 vs. 58%, p<0.001).94 Another study
showed a significant decrease in protein S activity of patients
compared with the control group.91 Two other studies
reported protein S activity slightly below the normal
range.83,92 The available COVID-19 literature around the
role of protein S in coagulopathy and hyperinflammation
crosstalk is more hypothetical than experimental. Increased
plasma level of protein S-regulatory protein C4BP, caused by
proinflammatory responses, leads to unavailability of free
protein S for anticoagulant activities.95 Development of
autoantibody against protein S during adaptive immune
responses can cause protein S insufficiency, as seen in
varicella infection.96 As a common consequence of respira-
tory distress in gravely ill COVID-19 patients, hypoxia down-
regulates PROS1 gene expression.64 Increased expression of
IL-6 in stroke patients was associated with decreased
protein S levels and a higher rate of VTE.97 IL-6, as an
early sensitive and specific predictor of a severe course of
COVID-19,19,98–101 also downregulates PROS1 gene expres-
sion.102 Recently proposed is the direct proteolysis of protein
S by the virus via its own papain-like protease (PLpro).103

Endotheliopathy as a common consequence of COVID-19
infection can reduce protein S levels, since endothelial cells
are themajor site of protein S production.103As the virus also
affects two other sources of protein S synthesis or storage,
platelets and hepatocytes, it can, theoretically, reduce the
plasma level of protein S.103Given the critical roles played by
protein S, it can potentially be considered as a therapeutic
target in COVID-19 disease. However, whether secondary
protein S deficiency causes both coagulopathy and hyper-
inflammation, for any reason, needs further investigation.
More cohorts of patients are needed to determine whether
protein S deficiency, if present, is itself a result of progressive,
consumptive coagulopathy in a hyperinflammatory condi-
tion induced by the virus, and whether it exacerbates in-

flammation. In a hyperinflammatory state caused by virus-
induced sepsis, the coagulation cascades are activated and
progress to the consumption of all hemostatic mediators
(even anticoagulants like protein S), a pathologic condition
termed DIC. Since protein S is itself an anti-inflammatory
protein, its consumption (deficiency) can potentially exacer-
bate inflammation.

Antithrombin
Concerning the changes in plasma levels of antithrombin, a
systematic review and meta-analysis of 471 patients calculat-
ed the weighted mean difference (WMD) of antithrombin
levels in these patients with or without severe illness.104 It
was shown that WMD of antithrombin levels in the gravely ill
(n¼197, 41.8%), compared with those with a milder course,
was –10 IU/dL (95% confidence interval: –3 to –17 IU/dL; I2:
86%). This study indicated that antithrombin levels are signifi-
cantly reduced in severe illness.104 Six cohorts showed anti-
thrombin levels below the lower limit of the normal range, not
in all, but in several their investigated subjects.83,84,91,105–107

One of them found body mass index (BMI) to be significantly
higher in patients with lower antithrombin values and docu-
mented an inverse correlation between antithrombin values
and BMI (r: �0.33; p¼0.0179), suggesting that antithrombin
may be the link between obesity and a poorer prognosis.107

Two other COVID-19 cohorts found antithrombin levels signif-
icantly lower innonsurvivors than in survivors.107,108Liao et al
studied 308 patients retrospectively and found a significantly
higher incidence of low antithrombin activity in critically ill
and severely ill groups than in thosewithmoderate disease.109

In another study, reduced antithrombin values have been
reported to be associated with nephritis.110 However, five
cohorts comparing the antithrombin activity between
patients and a control group, and between ICU and non-ICU
patients, showed that antithrombin values in most patients
were within normal range, without any significant difference
between the studied populations.11,30,52,92,111 Altogether,
these findings suggest that SARS-CoV-2-induced acute anti-
thrombin deficiency caused by consumptive coagulopathy, or
reduced production due to acute inflammation, justifies in-
clusion of antithrombin measurements as essential in the
routine laboratory measures for monitoring COVID-19
patients.112

Antithrombin supplementation has also been a valuable
measure for management of critically ill patients.108,113

However, it is yet unknown why the acute antithrombin
deficiency occurs in only some patients. Unfractionated
heparin (UFH) and low-molecular-weight heparin
(LMWH), the two anticoagulants that are widely used in
hospitals, require antithrombin to be efficacious. Another
hypothesis posits that acute antithrombin deficiency may be
responsible for inability to achieve an adequate anticoagu-
lant effect following the usual doses of heparin therapy in
some patients.114 A multicenter cohort study on 150 SARS-
CoV-2-infected patients evidenced thrombotic events in 43%
of patients despite heparin therapy or prophylaxis. However,
this reported failure of a response to heparin was not
mechanistically related to antithrombin deficiency as the
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majority had normal or even high levels of antithrombin.30

Another cohort of 10 critically ill patients, who experienced
thrombosis despite receiving prophylactic doses of LMWH,
showed that all had reduced antithrombin levels. They were
also nonresponders to the therapeutic doses of UFH. Howev-
er, argatroban, a direct thrombin inhibitor that works inde-
pendently of antithrombin, provided the patients with
adequate anticoagulation.115 Anakli et al also found that
antithrombin supplementation using fresh frozen plasma,
in severely ill patients experiencing COVID-19-associated
coagulopathy, improves the anticoagulant effect of UFH
and LMWH without the need to elevate heparin dosage.108

Fibrinolytic System

The imbalance between profibrinolytic and antifibrinolytic
factors leads to pathologically upregulated (hyper-) or down-
regulated (hypo-) fibrinolysis. Fibrinolysis shutdown/ fibrino-
lysis resistance, which refers to a state of hypofibrinolysis,
seemstobeoneof theleadingpathophysiologicalmechanisms
of the hypercoagulable state in COVID-19 disease. Viscoelastic
hemostatic assays using thromboelastography (TEG) or rota-
tional thromboelastometry (ROTEM) has provided evidence
(such as elevated maximum clot firmness [MCF] and reduced
maximum lysis) that patients severely infected with SARS-
CoV-2 are in a hypofibrinolytic state.11,12,116–118 In addition,
“completefibrinolysis shutdown” (lysis at 30minutes of 0% on
TEG) has also been reported in 57% of severely ill patients
(n¼44).118 A significant association between the hypofibri-
nolytic state and thromboticcomplicationswasalsoevidenced
by these studies. Moreover, the addition of exogenous tissue
plasminogenactivator (tPA) to theROTEMsampleofCOVID-19
patients did not confer any sensitivity to the additive
tPA.11,119–121 Finally, two studies demonstrated that ICU
patients who received therapeutic anticoagulation had signif-
icantly higher MCF and clot lysis time than the control
groups.122,123 The molecular mechanism of the hypofibrino-
lytic state in critical COVID-19 illness seems attributable
primarily to the overexpression of PAI-1, the most potent
antifibrinolytic mediator, from endothelial cells and activated
platelets.124–126 However, it seems that elevated PAI-1 is
perhaps not the only cause of hypofibrinolysis. Studies on
patients with interstitial lung disease have also evidenced an
increase of TAFI and PAI-3 (protein C inhibitor) in the alveolar
space.127,128 Similar results were highlighted during the 2003
SARS-CoVepidemic.129,130Today, significantly increasedPAI-1
values have been found in multiple studies on patients with
COVID-19, with some studies reporting values up to fourfold
higher in COVID-19 patients compared with control
groups.123,131 This overload of PAI-1 in SARS-CoV-2 infection
can be further aggravated by raised angiotensin II levels in the
blood of patients with COVID-19, with PAI-1 levels being
upregulated in the endothelial cells, resulting in elevated
circulatory PAI-1 levels.56,58,123,127 Angiotensin 1–9 also acti-
vates platelets and stimulates the release of PAI-1 from α-
granules.59 Moreover, several studies have found elevation, in
the plasma levels, of tPA, urokinase plasminogen activator
(uPA), and TAFI in patients suffering from the severe form of

COVID-19,11,132demonstrating thevariableeffectsof infection
on the fibrinolytic system. It seems that the overexpression of
PAI-1 and TAFI overwhelms the local profibrinolytic effects of
elevated tPA and uPA levels. Hence, the net result of these
changes is a hypofibrinolytic state.

Platelets

Thrombocytopenia has been reported in approximately 55% of
patients with SARS,133,134 which, together with leukopenia, was
the predominant laboratory feature.135 The degree of thrombo-
cytopenia and hypoxia was used as a prognostic model to
estimatethemortalityrate inthe2003epidemicwithanaccuracy
of 96.2%.136 Similar studies corroborated these findings in SARS-
CoV.135,137–140 Thrombocytopenia and lymphopeniawere intro-
duced as a disease severity index and predictive factor of
developing pneumonia and respiratory failure in MERS-CoV
infection.141,142 Other studies also endorsed these observations
in the MERS-CoV epidemic.143–145 A similar trend has been
observed in SARS-CoV-2 infection; thrombocytopenia has been
reported in 5 to 41.7% of patients, depending on disease severi-
ty,23,146–148 and a meta-analysis of 1,779 COVID-19 patients
demonstrated that thrombocytopenia correlated with a more
than fivefold elevated risk of grave sickness.149 Another meta-
analysisof7,613patientsdemonstrated that thecritically ill hada
lower platelet count than those with nonsevere illness.150 A
temporary downward trend of platelet count could be clinically
indicative of an aggravating thrombotic condition during
hospitalization.151 ►Table 2 summarizes the changes in platelet
indices inpatientswithCOVID-19.Thrombocytopeniaalongwith
platelet hyperactivation (thrombocytopathy) contributes to the
excessive thrombosis and deregulated immune response.

SARS-CoV-2-induced endothelial damage in the lung
leads to platelet adhesion to the subendothelium of the
pulmonary microvasculature via the aid of VWF’s bridging
function; subsequent platelet-rich thrombotic microangiop-
athy hinders viremic spread through the circulation.147,152 In
patients affected with the severe form of COVID-19, elevated
total levels and binding capacity of VWF, with concomitant
mild thrombocytopenia, suggests that infection triggers the
process of platelet thrombosis, thereby activating the coagu-
lation cascade. Consumption of platelets during the early
stages of pulmonary endothelial damage is followed by a
compensatory response of the bone marrow to restore the
circulatory platelet count. This rebound thrombocytosis is
accompanied by production of larger (increased mean plate-
let volume) and younger (increased immature platelet frac-
tion) platelets with higher hemostatic potential.146,153 Some
pathophysiological mechanisms of virus-induced thrombo-
cytopenia have been proposed so far, including generation of
autoantibodies against platelets, viral invasion of the mega-
karyocytes via CD13 or CD66a, and endotheliitis-routed
platelets and coagulation cascade activation with subse-
quent platelet consumption.154 SARS-CoV-2 also changes
the gene expression pattern of platelets, such as elevation
in the basal expression of P-selectin.155 The molecular basis
of platelet hyperactivity seen in patients with COVID-19may
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be associated with the increased MAPK pathway activation
and thromboxane production.155

As themajor and rapid compensators of platelet consumption
or clearance, megakaryocytes possibly undergo pathological
changes (megakaryocytopathy) during SARS-CoV-2 infection.
One study revealed that the lung tissue of some patients with
COVID-19 contains abnormal CD61þ megakaryocytes with nu-
clear hyperchromasia and atypia.39 A case series of autopsy
studies showed that megakaryocytes are present in the heart,
kidneys, and especially lungs of patients with COVID-19.156 Both
studies have suggested that thosemegakaryocytes were actively
producing platelets. However, the presence of these compensa-
tory megakaryocytes, which possibly originated in the lungs, is
inconsistentwiththedevelopingthrombocytopeniaseeninsome
patients. A therapeutic application for antiplatelet drugs in
patients has not yet been recommended for all patients. It is
unclear whether targeting platelets during SARS-CoV-2 infection
improves patient outcomes. Today, many randomized clinical
trials areproposedontheuseofprophylacticdosesofantiplatelet
agents in the management of patients with COVID-19
(NCT04365309, NCT04363840, NCT04410328; https://clinical-
trials.gov). However, in patients with mild thrombocytopenia,
antiplatelet therapywould carry a greater risk of hemorrhage.157

Conclusion

COVID-19-associated coagulopathy is identified by a hyper-
coagulable state with a subsequent high rate of thrombotic
microangiopathy, DVT and PE. Thrombotic events are the

major cause of morbidity and mortality in extremely sick
patients. The pathogenesis of COVID-19-associated throm-
bosis is likely to involve various cell types and elaborately
interconnected processes including hemostasis, vascular
integrity, and inflammation. It seems that endotheliopathy
and thrombocytopathymay play a central role in the etiology
of thrombotic microangiopathy in patients with COVID-19.
Direct invasion of the endothelium and platelets by the virus
can result in endotheliopathy and thrombocytopathy, re-
spectively. These can also be due to the cellular response to
the virus-induced inflammation, triggering immune cell
response, complement activation, and cytokine storm. Al-
though anticoagulation alone has yielded some satisfaction,
we are still faced with dreadful thrombotic complications
even in patients receiving anticoagulants. Thus, targeting a
couple of main pathological processes with combinational
therapeutic approaches, or treatment with pleiotropically
acting drugs, is likely to be more efficacious than the ap-
proach of dealing exclusively with thrombosis in patients
with COVID-19.
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Table 2 Platelet indices changes in COVID-19 patients

Parameters In patients affected with SARS-Cov-2 Reference

Platelet count Usually normal, until the advanced stages, when it reduces to moderately low
levels.

149,150

MPV Increased (at least in unwell patients with thrombocytopenia).
Correlates with a decline in average platelet count.
Can be used as an effective indicator of platelet activation and increased
thrombosis risk.

158–160

IPF Increased (at least in unwell patients with thrombocytopenia).
Effective indicators of platelet activation and increased thrombosis risk.
Predictor of a reduction in the total platelet count during coagulopathy.
Reticulated platelets may reflect an increased platelet turnover in the setting
of a normal platelet count and this aspect could be of critical importance in the
early diagnosis of COVID-19.

158

PDW Increased (at least in unwell patients with thrombocytopenia).
A key marker of platelet activation in patients with COVID-19.
Increased in venous thrombosis as well as in several hypercoagulable states,
such as cardiovascular diseases.

160

PLR Patients with severe COVID-19 have higher levels of PLR than patients with
nonsevere disease. In COVID-19, PLR may be used as separate prognostic
indicators of disease seriousness.

161,162

MPR A high MPR level is an independent risk factor for severe pneumonia. 163

P-LCR A high P-LCR is significantly associated with lower survival rates. 160,164,165

Platelet aggregation SARS-CoV-2 infection results in faster platelet aggregation in response to low-
dose agonists.

158

Abbreviations: IPF, immature platelet fraction; MPV, mean platelet volume; MRP, platelet mean volume/platelet count ratio; PDW, platelet
distribution width; P-LCR, platelet larger cell ratio; PLR, platelet to lymphocyte ratio; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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