Real-World Outcome of Platinum-Based Chemotherapy in Advanced Breast Cancer (ABC): A Retrospective Study from a Tertiary Cancer Center in India

Indhuja Muthiah Vaikundaraja1 Manikandan Dhanushkodi1 Venkatraman Radhakrishnan1 Jayachandran Perumal Kalaiarasai1 Nikita Mehra1 Gangothri Selvarajan1 Arun Kumar Rajan1 Siva Sree Kesana1 Balasubramanian Ananthis2 Priya Iyer2 Manjula Rao3 Arvind Krishnamurthy3 Sridevi Velusamy3 Rama Ranganathan4 Tenali Gnana Sagar1

1 Department of Medical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
2 Department of Radiation Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
3 Department of Surgical Oncology, Cancer Institute (WIA), Chennai, Tamil Nadu, India
4 Department of Epidemiology & Biostatistics, Cancer Institute (WIA), Chennai, Tamil Nadu, India

Address for correspondence Manikandan Dhanushkodi, MD, DM, DNB, Medical Oncology, Cancer Institute (WIA), Chennai, 38, Sardar Patel Road, Chennai, Tamil Nadu, 600036, India (e-mail: dmani1982@gmail.com).

Abstract

Introduction There is a paucity of data on platinum-based chemotherapy in advanced breast cancer (ABC) from developing countries like India.

Objectives The objectives were to analyze the efficacy and safety of platinum-based chemotherapy in patients with ABC.

Materials and Methods This was a retrospective study of 35 patients with ABC who were treated with platinum-based chemotherapy (gemcitabine and carboplatin, [GC]) in a tertiary cancer center in India from August 2015 to November 2019. The inclusion criteria were patients with ABC, who had received palliative chemotherapy with GC. The exclusion criteria were patients who had received less than two cycles of GC and patients who received platinum-based chemotherapy for neuroendocrine carcinoma of the breast.

Results The median age was 45 years (range: 28–68 years). All patients were female (97%) except one male (3%). The histology was ductal carcinoma (77%), mixed (17%), and others (6%). Out of the 12 patients tested for breast cancer (BRCA) gene mutation, six patients had a BRCA mutation. Patients with metastatic and locally progressive disease were 91 and 9%, respectively. The median number of prior lines of systemic therapy for metastatic disease was 1 (range: 0–5). The median number of sites of metastasis was 2 (range: 0–5). Patients with visceral crises were 23%. The median

Keywords

► advanced breast cancer
► platinum-based chemotherapy
► real-world outcome

ISSN 0971-5851.
number of cycles of GC chemotherapy received was 6 (range: 2–6). A dose reduction in chemotherapy was done in 74%. The responses among 34 evaluable patients were complete response (11%), partial response (24%), stable disease (41%), and progressive disease (24%). Grade 3 or more hematological and nonhematological toxicities were observed in 69 and 9%, respectively. The median progression-free survival and overall survival were 6 and 8 months, respectively. The 1-year progression-free survival and overall survival were 19 and 34%, respectively. Multivariate analysis showed that patients who had received more than 3 cycles had a better outcome.

Conclusion GC was an active and well-tolerated regimen in ABC regardless of the receptor status. Further prospective randomized studies are warranted to assess the optimal regimen in patients with triple-negative breast cancer.

Introduction

Platinum-based neoadjuvant chemotherapy (cisplatin and carboplatin) has been shown to improve pathological complete response in triple-negative breast cancer (TNBC), especially in the breast cancer (BRCA) mutant subtype. Platinum-based chemotherapy (PBC) can be combined with anti-HER2 therapy (trastuzumab) for the treatment of HER2-positive BRCA. The impact of PBC as compared to non-PBC in advanced breast cancer (ABC) is unclear. The chemotherapy drugs that can be combined with platinum include taxane, vinorelbine, etoposide, and gemcitabine. The response rates are higher in the first line as compared to second or third-line therapy. There is a paucity of data on PBC in ABC from developing countries like India. The objectives of this study were to analyze the efficacy and safety of PBC in patients with ABC.

Materials and Methods

This was a retrospective study of 35 patients with ABC who had received palliative chemotherapy with gemcitabine and carboplatin (GC) in a tertiary care cancer center from August 2015 to November 2019. The data were retrieved from the electronic medical records (EMR) of these patients for whom gemcitabine and carboplatin prescription was given. At our hospital, patient records registered from 1954 until 2016, and records of patients who had deceased were scanned. The data of patients for whom case records were scanned were obtained from the EMR. For the alive patients registered after 2016, we obtained data from the individual case record obtained from the tumor registry.

The inclusion criteria were patients with ABC, who had received palliative chemotherapy with GC. The exclusion criteria were patients who had received less than two cycles of GC and patients who received PBC for neuroendocrine carcinoma of the breast. BRCA was tested as per National Comprehensive Cancer Network (NCCN) hereditary BRCA testing criteria and the methodology used was Ion Torrent next-generation sequencing. The primary objective was to assess the progression-free survival (PFS) and overall survival (OS) of patients with recurrent/metastatic BRCA who received palliative chemotherapy with GC while the secondary objective was to assess the toxicity.

Prechemotherapy blood investigations included hemogram, renal function test, and liver function test before the day (D) 1 of each cycle and hemogram and differential count before D8 of each cycle. Chemotherapy was initiated only if the absolute neutrophil count was more than 1000/µL and platelet count was >1 lakh/µL. The premedications were injection palonosetron 0.25 mg intravenous bolus and injection dexamethasone 12 mg intravenous bolus 30 minutes before chemotherapy. The chemotherapy schedule was injection gemcitabine 1 gm/m² in 250 mL 0.9% normal saline over 30 minutes intravenously on D1 and D8 and injection carboplatin area under the curve 5 or 6 in 250 mL 0.9% normal saline over 1 hour on D1.

Patients were assessed clinically for response and toxicity before each cycle. Imaging was done with either chest X-ray, ultrasound of abdomen/pelvis, or contrast-enhanced chest tomography of chest/abdomen/pelvis or positron imaging tomography-computed tomography once every 3 to 4 months and when clinically indicated. Responses were assessed as per the Response Evaluation Criteria in Solid Tumors, version 1.1 criteria. Toxicity was graded as per Common Terminology Criteria for Adverse Events, version 4.0. Chemotherapy dose reduction was done in patients with ≥ grade 3 toxicity and discontinued in patients with life-threatening toxicity.

Statistical Analysis

Descriptive statistics were used to analyze the baseline characteristics. PFS was calculated from the date of initiation of GC to the date of recurrence or death. OS was calculated from the date of the initiation of GC to the date of death due to any cause. Survival was estimated by the Kaplan–Meier method and compared across groups using the log-rank test. Cox proportional hazard model was used to find the prognostic factors affecting the outcome. All p-values were two-sided, and values < 0.05 were considered significant. This was performed using the Statistical Package for the Social Sciences version 15 (SPSS), Chicago, Illinois, United States.
Ethics
The procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1964, as revised in 2013. The study was approved by the Institutional Ethics Committee of Cancer Institute (WIA), Chennai (IEC/2020/Aug 08), dated Aug 14, 2020 and a waiver of consent was obtained as this was a retrospective study.

Results

Baseline Characteristics
A total of 35 patients were included in this analysis with a median follow-up of 8 months (range: 2–39 months). The median duration from diagnosis to start of GC chemotherapy was 18 months (range: 2–113 months). The median age was 45 years (range: 28–68 years). All patients were females (n = 34/35, 97%) except for one male (n = 1/35, 3%). Premenopausal women were 76% (n = 26/35) and the rest 24% (n = 8/35) were postmenopausal. The Eastern Cooperative Oncology Group Performance Status (ECOG PS) was 1 (83%) and 2 (17%). The histology was ductal carcinoma (77%), mixed (17%), and others (6%). The differentiation was grade 2 (17%) and grade 3 (80%). The molecular subtype was luminal B (n = 10/35, 29%), HER2 positive (n = 6/35, 17%), and triple-negative subtype (n = 19/35, 54%). Two of the six patients with HER2-positive BRCA had received adjuvant trastuzumab. Out of the 12 patients tested for BRCA 1 and 2 gene mutations, six patients had a BRCA 1 mutation. Recurrence was confirmed by biopsy in 37% (n = 13/35) patients. Patients with metastatic and locally progressive disease were 91 and 9%, respectively. The median number of prior lines of systemic therapy for metastatic disease was 1 (range: 0–5). The median number of sites of metastasis was 2 (range: 0–5). Patients with visceral crises were 23% (n = 8/35). This study included two patients with brain metastasis and one with choroidal metastasis. The baseline characteristics are shown in Table 1.

Treatment, Response, and Toxicity
The median number of cycles of GC chemotherapy received was 6 (range: 2–6). A dose reduction in chemotherapy was done in 74% (n = 26/35). The responses were complete response (n = 4/35, 11%), partial response (n = 8/35, 23%), stable disease (n = 14/35, 40%), progressive disease (n = 8/35, 23%), and unknown (n = 1/35, 3%). The hematological and nonhematological toxicities of ≥ grade 3 were observed in 69 and 9%, respectively. Grade 3 or more anemia, leucopenia, and thrombocytopenia were observed in 34, 46, and 37%, respectively. Febrile neutropenia was observed in 9% of patients. Grade 3 or more chemotherapy-induced nausea and vomiting, hypersensitivity, and neuropathy were observed in 3, 3, and 3%, respectively. There was no treatment-related mortality.

Survival
The median PFS (Fig. 1) and OS (Fig. 2) were 6 (95% confidence interval [CI]: 3.2–5.7 months) and 8 months (95%...
CI: 5.3–10.7 months), respectively. The 1-year PFS and OS were 19 and 34%, respectively. Univariate analysis was done with factors including age, menopausal status, histology, molecular subtype, BRCA status, number of lines of prior therapy, number of sites of metastasis, and number of cycles of GC chemotherapy for correlation with PFS. Univariate analysis showed that patients with in situ infiltrating ductal carcinoma histology and those who received more than 3 cycles of chemotherapy had better PFS (►Table 2). Multivariate analysis confirmed that patients who had received more than three cycles of chemotherapy had better PFS (hazard ratio: 3.05, 95% CI: 1.36–6.82, \(p = 0.007 \)).

Discussion

This study is the largest study from India on PBC in ABC. The study included real-world patients like those in ECOG PS 2 (17%), HER2 positivity (17%), and pretreated (maximum 5 lines of prior systemic therapy) ABC who were treated with gemcitabine and carboplatin.

Currently, there is no standard chemotherapy option in patients who progress after exposure to anthracycline, taxane, and capecitabine. The chemotherapy options include ixabepilone, vinorelbine, eribulin, and PBC. We chose GC as it was an affordable treatment option.

Germline BRCA testing was done in 12 patients. Among them, 6 patients (50%) had BRCA 1 mutation and none had BRCA 2 mutation. The NCCN guidelines recommend BRCA testing for all patients with a family history of breast or ovarian cancer, age less than 45 years, bilateral BRCA, male BRCA, breast and ovarian cancer, and TNBC less than 60 years of age.

Biopsy confirmation of recurrent disease was done only in 37% due to inaccessible site, patient’s unwillingness, and short disease-free survival. All current guidelines including (NCCN), American Society of Medical Oncology, European Society of Medical Oncology, and ABC recommend repeat biopsy from accessible metastatic setting especially in the
A study from Gujarat Cancer Research Institute in 21 patients with TNBC showed a response rate of 72% and the survival details were unreported.14 There are no further studies on PBC in ABC from India. Our study had a lower overall response rate (34%) as it included pretreated patients with ABC. A retrospective study of patients ($n = 375$) with de novo ABC from All India Institute of Medical Sciences, Delhi, showed that hormone-positive subset, good PS (0-1), and oligometastasis had a better outcome. Patients with TNBC and those with liver or brain metastasis had a poor outcome.15

A study from Royal Marsden showed that PBC improved response and PFS but not OS in patients with advanced TNBC.16 The triple-negative (TNT) randomized controlled trial (RCT) in patients with untreated TNBC, carboplatin, and docetaxel had similar response and survival. But in patients with BRCA mutated TNBC, carboplatin had a better response and survival.17 A phase 3 RCT from China showed that patients treated with GC had a better PFS than gemcitabine-paclitaxel in untreated advanced TNBC.18 A meta-analysis with three RCTs showed that PBC does not improve PFS in patients with advanced TNBC.19 Another meta-analysis of 4,625 patients with ABC showed that PBC improved PFS and OS with increased fatigue, hematological, and gastrointestinal toxicity.20 The details of the studies with PBC in ABC are shown in Table 2.

In our study, the median PFS and OS were only 6 and 8 months, respectively. This could be due to the inclusion of real-world patients like heavily pretreated subset and HER2-positive patients (who could not afford anti-HER2 therapy). The TNBC and BRCA mutant subtype did not correlate with survival possibly because of the small numbers. GC-based regimen could be considered as first-line regimen in patients with BRCA mutant advanced TNBC and as a third-line regimen after anthracycline and taxane in patients with BRCA wild-type advanced TNBC.

Poly ADP ribose polymerase (PARP) inhibitors (olaparib, talazoparib) had shown to improve response and PFS as compared to non-PBC (capecitabine, eribulin, or vinorelbine) in patients with germline BRCA-mutated advanced BRCA.21,22 However, the addition of PARP inhibitor (niraparib) to GC chemotherapy did not improve survival in patients with advanced TNBC.23

Immunotherapy (atezolizumab) with nab-paclitaxel had shown to improve survival as compared to nab-paclitaxel alone in patients with untreated advanced TNBC, especially the PD-L1-positive subset.24 Pembrolizumab with chemotherapy (nab-paclitaxel, paclitaxel, gemcitabine + carboplatin) improved PFS as compared to chemotherapy alone in patients with PD-L1-positive (combined positive score > 10) untreated advanced TNBC. Sacituzumab govitcan-hziy is an antibody-drug conjugate that targets the human trophoblast cell-surface antigen 2 (Trop-2) with SN-38 had shown durable responses in patients with heavily pretreated advanced TNBC.20

The multivariate analysis showed that patients who received more than three cycles of chemotherapy had an improved PFS. None of the other studies of PBC in ABC had shown a similar correlation. The strength includes the first

Table 2 Univariate analysis with correlation with progression-free survival

<table>
<thead>
<tr>
<th>Variable</th>
<th>HR</th>
<th>CI (95%)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infiltrating ductal carcinoma</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>2.40</td>
<td>1.04–5.67</td>
<td>0.04</td>
</tr>
<tr>
<td>Molecular subtype</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luminal A</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HER2 enriched</td>
<td>1.23</td>
<td>0.33–4.60</td>
<td>0.75</td>
</tr>
<tr>
<td>Triple negative breast cancer</td>
<td>1.76</td>
<td>0.79-3.92</td>
<td>0.16</td>
</tr>
<tr>
<td>Number of cycles of chemotherapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 3 cycles</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 3 cycles</td>
<td>3.23</td>
<td>1.47–7.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Number of sites of metastatic disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 2 sites</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 2 sites</td>
<td>0.88</td>
<td>0.39–1.99</td>
<td>0.76</td>
</tr>
<tr>
<td>Number of lines of prior systemic therapy for metastatic disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 2 lines</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 2 lines</td>
<td>0.46</td>
<td>0.16–1.35</td>
<td>0.16</td>
</tr>
<tr>
<td>BRCA mutation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA positive</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRCA wild type</td>
<td>0.43</td>
<td>0.10–1.78</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Abbreviations: BRCA, breast cancer; CI, confidence interval; HR, hazard ratio.
study with the largest sample size from India on real-world outcomes with PBC in ABC. The limitations include retrospective design, lack of biopsy confirmation of recurrence (63%), and unknown BRCA status (66%). Further prospective randomized studies are warranted to assess the optimal regimen in patients with TNBC.

Conclusion
This study is the largest study from India on PBC in ABC representing the real-world outcome. Patients with ECOG PS 2, HER2 positivity, and pretreated ABC were included in this analysis. GC was an active and well-tolerated regimen in advanced BRCA regardless of the receptor status.

Table 3 Studies on platinum-based chemotherapy in advanced breast cancer

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria</th>
<th>Sample size</th>
<th>Design</th>
<th>Response (%)</th>
<th>PFS (mo)</th>
<th>OS (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our study</td>
<td>ABC</td>
<td>35</td>
<td>Retrospective</td>
<td>34</td>
<td>6 mo</td>
<td>8 mo</td>
</tr>
<tr>
<td>Maka et al 14</td>
<td>TNBC</td>
<td>21</td>
<td>Retrospective</td>
<td>72</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sirohi et al, UK 9</td>
<td>TNBC</td>
<td>155</td>
<td>Retrospective</td>
<td>41</td>
<td>6 mo</td>
<td>11 mo</td>
</tr>
<tr>
<td>Tutt et al, TNT trial 10</td>
<td>TNBC</td>
<td>766</td>
<td>Phase 3, RCT, carboplatin versus docetaxel</td>
<td>31 versus 34%</td>
<td>3.1 mo versus 4.4 mo</td>
<td>12.8 mo versus 12 mo</td>
</tr>
<tr>
<td>Hu et al, China 11</td>
<td>TNBC</td>
<td>240</td>
<td>Phase 3, RCT, gemcitabine cisplatin versus gemcitabine paclitaxel</td>
<td>65 versus 49%</td>
<td>7.7 mo versus 6.4 mo</td>
<td>Immature</td>
</tr>
</tbody>
</table>

Abbreviations: ABC, advanced breast cancer; OS, overall survival; PFS, progression-free survival; RCT, randomized controlled trial; TNBC, triple-negative breast cancer.

Conflict of Interest
Nil.

Acknowledgement
None.

References

