Evolution of a Glaucoma Fellow’s Surgical Training: Improvements in Tube Shunt Case Times during the Academic Year

Cason B. Robbins, MD1© Khalid Aldaas, MD2 Sanjay Asrani, MD1 Stuart McKinnon, MD, PhD1 David Fleischman, MD2 Divakar Gupta, MD, MMCi1

1 Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
2 Department of Ophthalmology, University of North Carolina, Chapel Hill, North Carolina

Address for correspondence Divakar Gupta, MD, MMCi, Department of Ophthalmology, Duke University School of Medicine, Durham, NC (e-mail: divakar.gupta@duke.edu).

Abstract

Purpose The aim of the study is to report changes in tube shunt placement surgical case times for glaucoma fellows during the course of the academic year.

Patients and Methods Electronic health records were retrospectively reviewed to determine patient demographics, surgical case times (defined as procedure start time to procedure end time), and glaucoma fellow involvement. Only cases with a glaucoma fellow as the primary surgeon were included. Operative case times were compared by first and second halves of the academic year (beginning in July and ending in June) using a two-tailed t-test.

Results Five hundred and seventy-three individual tube shunt surgeries (385 Ahmed, 188 Baerveldt) performed by 28 glaucoma fellows (17 females, 11 males) at Duke University Eye Center and University of North Carolina Medical Center were included. Overall, case times were significantly shorter in the second half of the academic year as compared with the first (55.3 ± 17.1 minutes vs. 61.0 ± 17.4 minutes, \(p < 0.001 \)). Both male (57.3 ± 16.8 minutes vs. 63.2 ± 18.6 minutes, \(p = 0.008 \)) and female (53.5 ± 17.3 minutes vs. 59.3 ± 16.4 minutes, \(p = 0.003 \)) fellows demonstrated shorter case times over the academic year; additionally, female fellows trended toward shorter case times than male fellows in both the first half (\(p = 0.072 \)) and second half (\(p = 0.053 \)) of the academic year. Fellows also exhibited shorter case times with both Ahmed implants (54.1 ± 16.2 minutes vs. 59.3 ± 15.8 minutes, \(p = 0.002 \)) and Baerveldt implants (57.8 ± 18.9 minutes vs. 64.2 ± 20.0 minutes, \(p = 0.025 \)) cases over the academic year. Baerveldt case times were significantly longer than Ahmed cases in the first half (\(p = 0.028 \)) and trended toward being longer than Ahmed cases in the second half (\(p = 0.070 \)).

Conclusion Across 5 years at two academic institutions, glaucoma fellows had shorter primary tube shunt surgical case times in the second half of the academic year. These findings reflect improvement in surgical efficiency throughout glaucoma fellowship. These findings should be taken into consideration when scheduling trainee surgeries at academic medical centers at different points in the academic year.

Keywords► glaucoma
► surgery
► tube shunt
► Ahmed
► Baerveldt
► fellows
► surgical education

received April 8, 2020
accepted after revision August 5, 2021

ISSN 2475-4757.

© 2021. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical Publishers, Inc., 333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
Surgical education in ophthalmology is imperative for ensuring patient safety and preparing future physicians for independent surgical practice. In the subspecialty of glaucoma, fellows commit 1 year following ophthalmology residency to gain additional surgical experience in complex aqueous filtering surgeries, including tube shunt placement and trabeculectomy. While the importance of surgical education in glaucoma fellowship is widely acknowledged, there is limited literature reporting the quantitative impact of a dedicated fellowship program on surgical efficiency. Additionally, the logistical implications of surgical scheduling in ophthalmology fellowship programs at various points in the academic year have not been explored in detail.

Several studies have sought to characterize trainee surgical outcomes in ophthalmic surgical training programs. For residents, surgical experience is one of the primary drivers of improvements in operative case times for cataract surgery over the course of training, with more cases yielding shorter case times, particularly early in training. While trainees may need a considerable number of cases as primary surgeon to gain surgical mastery, there is a clear opportunity cost of trainee surgical involvement. A recent cost-analysis paper found that in California (fiscal year 2014), 1 minute of operating room time was worth $36 to $37. In strabismus surgery, the cost of resident involvement was reported to be $3141.95 per year due to increased operative times. For orthopaedic surgery residents in 1996 to 1997, operating room costs were increased by $661.85 on average for trainee cases due to increased operative time. In plastic surgery, 2011 costs were estimated to be $275 per trainee involved in a given case, and over $440 per case for craniofacial surgical fellows. As such, understanding potential improvements in surgical case times over the course of glaucoma fellowship could help us better measure surgical training and could galvanize efforts to improve surgical education for fellows.

The landscape of glaucoma filtering surgery has changed dramatically in the last two decades. Studies have shown an increase in tube shunt placement with a concomitant decrease in trabeculectomy surgery among national Medicare claims as well as resident and fellow case logs; this may be due to several factors, including the feared complications of bleb filtering surgery (bleb-related endophthalmitis, hypotonous maculopathy) as well as improvements in tube shunt devices. In the wake of the Tube versus Trabeculectomy study and the Primary Tube Versus Trabeculectomy study, which have provided invaluable comparisons between tube shunt and trabeculectomy surgeries, it is likely that rates of tube shunt administration will continue to increase. Education in tube shunt placement will be a core component of glaucoma surgical training for the foreseeable future; however, the current state of glaucoma fellows’ case times for tube shunt placement has not been reported. As such, we sought to report operative case times for glaucoma fellows at the Duke University Eye Center and the University of North Carolina (UNC) over a 5-year period (2014–2019), to determine whether fellows attain greater surgical efficiency over the course of the academic year.

Materials and Methods

Prior approval for this retrospective study was obtained from the Duke University Health System and University of North Carolina Institutional Review Boards, and the requirement for informed consent was waived. This study complied with the Health Insurance Portability and Accountability Act of 1996 and followed the tenets of the Declaration of Helsinki.

Retrospective clinical data regarding tube shunt placement cases was abstracted using the electronic health record at UNC and Duke (Epic, Verona, WI). We reviewed all procedures coded using Current Procedural Terminology 66180 for aqueous shunt placement performed from July 2014 to June 2019. All cases that were primarily performed by the fellow were identified and included by attending faculty attestation and/or documentation. The cases included constitute a representative sample of each fellow’s surgical cases with select faculty at each institution and are not intended to represent the holistic surgical curriculum offered by each respective program. Tube shunt procedures performed in combination with a secondary procedure (i.e., cataract surgery, trabeculectomy, vitrectomy) were excluded from analysis to eliminate the confounding effect of a second procedure on operative time.

Patient demographic data (age and sex), procedure date, fellow involved, attending/supervising surgeon, and type of tube shunt placed (Ahmed glaucoma valve, New World Medical Inc, Rancho Cucamonga, CA; Baerveldt glaucoma implant, Abbott Laboratories Inc, Abbott Park, IL) were recorded. For the purposes of statistical analysis, procedure dates were characterized as occurring during the first or second half of the academic year (July–June); as such, first-half cases were performed between July 1 and December 31 of a given year, and second-half cases were performed between January 1 and June 31 of a given year.

Statistical analysis was performed using Stata, software version 16.1 (StataCorp, College Station, TX). Operative case times were compared between groups using an independent-sample, two-tailed t-test, with the level of significance defined as <0.05.

Results

Five hundred and seventy-three tube shunt placement surgeries performed by 28 glaucoma fellows at Duke University Medical Center and UNC Health System over a 5-year period (2014–2019) were analyzed. Of the 28 fellows, 22 (79%) were trained at Duke and six trained at UNC (21%). Seventeen (61%) fellows were female, and 11 (39%) were male. Of the 573 surgeries performed, all operations involved the fellow as primary operator under supervision of an attending surgeon, and no surgeries included a combined procedure (i.e., cataract surgery, trabeculectomy, vitrectomy, etc.). Demographic data pertinent to the surgeries performed is detailed in Table 1. Of 573 tube shunt placements, 385 (67%) were Ahmed glaucoma valves and 188 (33%) were Baerveldt glaucoma drainage devices. The mean patient age
The academic year. Baerveldt case times were significantly shorter second half case times when compared to first half case times. Duke (55.5 ± 14.4 minutes), while Baerveldt cases were longer than Ahmed cases in the first half of the academic year, this difference only trended toward significance in the second half, and significant improvements in both Ahmed and Baerveldt case times were observed when comparing first to second half cases. These findings, taken together, suggest that fellows become significantly more efficient surgeons during the academic year, which may have implications for surgical scheduling at academic medical centers and emphasizes the value of surgical experience in glaucoma training.

In an analysis of resident-performed and attending-performed tube shunt placements in a United States ophthalmology residency program, clinical outcomes were found to be similar; however, resident-performed cases were significantly longer than the attending cases (55 minutes vs. 50 minutes, p = 0.02). While our study did not seek to

Table 1 Demographic data for surgical cases

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube shunt surgeries</td>
<td></td>
</tr>
<tr>
<td>Ahmed</td>
<td>67% (385/573)</td>
</tr>
<tr>
<td>Baerveldt</td>
<td>33% (188/573)</td>
</tr>
<tr>
<td>Patient age in years (mean ± SD)</td>
<td>66.3 ± 14.1</td>
</tr>
<tr>
<td>Patient gender</td>
<td>51% female (279/573)</td>
</tr>
<tr>
<td>Fellow gender</td>
<td>61% female (17/28)</td>
</tr>
<tr>
<td>Institution</td>
<td></td>
</tr>
<tr>
<td>Duke Eye Center</td>
<td>57% (328/573)</td>
</tr>
<tr>
<td>UNC</td>
<td>43% (245/573)</td>
</tr>
</tbody>
</table>

Abbreviations: SD, standard deviation; UNC, University of North Carolina.

was 66.3 (standard deviation 14.1) years. Two hundred seventy-nine (51%) patients were female, and 328 (57%) of the surgeries were performed at Duke.

Surgical case times by half of the academic year (i.e., first half, July–December, second half January–June) are reported in Table 2. When pooling data from all fellows, second half cases were significantly shorter than first half cases, by an average of 6 minutes per case (55.3 ± 17.1 minutes vs. 61.0 ± 17.4 minutes, p < 0.001). Female fellows trended toward shorter first and second half case times than male fellows; however, both female (53.5 ± 17.3 minutes vs. 59.3 ± 16.4 minutes, p = 0.003) and male (57.3 ± 16.8 minutes vs. 63.2 ± 18.6 minutes, p = 0.008) fellows had significantly shorter second half case times when compared with first half case times. Duke (55.5 ± 14.4 minutes vs. 59.2 ± 15.9 minutes, p = 0.026) and UNC (55.0 ± 20.2 minutes vs. 63.3 ± 19.2 minutes, p = 0.001) fellows both had significantly shorter case times in the second half of the academic year. Baerveldt case times were significantly longer than Ahmed case in the first half (64.2 ± 20.0 minutes vs. 59.3 ± 15.8 minutes, p = 0.028) but only trended toward being longer than Ahmed cases in the second half (57.8 ± 18.9 minutes vs. 54.1 ± 16.2 minutes, p = 0.070).

Table 2 Surgical case times for tube shunt placements by glaucoma fellows at Duke University Eye Center and University of North Carolina over a 5-year period (2014–2019)

<table>
<thead>
<tr>
<th></th>
<th>First half case times in minutes, mean ± SD (N)</th>
<th>Second half case times in minutes, mean ± SD (N)</th>
<th>p-Value b</th>
</tr>
</thead>
<tbody>
<tr>
<td>All fellows</td>
<td>61.0 ± 17.4 (264)</td>
<td>55.3 ± 17.1 (309)</td>
<td><0.001</td>
</tr>
<tr>
<td>Male fellows</td>
<td>63.2 ± 18.6 (111)</td>
<td>57.3 ± 16.8 (145)</td>
<td>0.008</td>
</tr>
<tr>
<td>Female fellows</td>
<td>59.3 ± 16.4 (153)</td>
<td>53.5 ± 17.3 (164)</td>
<td>0.003</td>
</tr>
<tr>
<td>UNC fellows</td>
<td>63.3 ± 19.2 (112)</td>
<td>55.0 ± 20.2 (133)</td>
<td>0.001</td>
</tr>
<tr>
<td>Duke fellows</td>
<td>59.2 ± 15.9 (152)</td>
<td>55.5 ± 14.4 (176)</td>
<td>0.026</td>
</tr>
<tr>
<td>Ahmed cases</td>
<td>59.3 ± 15.8 (175)</td>
<td>54.1 ± 16.2 (210)</td>
<td>0.002</td>
</tr>
<tr>
<td>Baerveldt cases</td>
<td>64.2 ± 20.0 (89)</td>
<td>57.8 ± 18.9 (99)</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Abbreviations: SD, standard deviation; UNC, University of North Carolina.

aDate used were from the academic calendar year. First half dates fell between July and December in a given year; second half dates fell between January and June.

bP-Value from two-tailed t-test, p-value less than 0.05 was considered significant.
Evolution of a Glaucoma Fellow’s Surgical Training

Robbins et al.

while we excluded combination surgeries due to case-to-case variability, we cannot fully control other factors contributing to case time variability, including prior ocular surgeries, intraoperative complications, or extenuating circumstances leading to outliers in operative case times. We have attempted to control for these potential confounders by including a large number of primary tube shunt placements (intentionally excluding tube shunt revision/replacement) which are likely very homogenous inpatient presentation and case difficulty. We analyzed Ahmed and Baerveldt tubes separately and compared with one another given the potential for differences due to procedural considerations. Overall, we feel that our cohort is representative of routine, uncomplicated primary tube shunt placements by glaucoma fellows at tertiary academic medical centers. The inclusion of other centers in future studies would improve the generalizability of our results. Finally, one cannot presume that shorter case times are equivalent to “better” surgical care, as one can perform a surgery quickly and carelessly. However, it is exceedingly unlikely that 28 fellows under close and direct supervision by attending faculty became more reckless over the course of the academic year. To definitively state this, visual outcomes would need to be included, which would require a carefully designed prospective study with strict exclusion criteria for alternative sources of complications including comorbid ocular conditions and unrelated surgery or trauma, for example.

This study provides a foundation for further research into glaucoma fellow education and surgical performance throughout the academic year. This study can also be applied to other surgical fields and could serve as a basis for more efficient operative room scheduling with regards to trainees. Future directions for research include assessing clinical outcomes (i.e., intraocular pressure control, visual acuity) in fellow-performed cases throughout the academic year, characterizing operative case times for other common surgical procedures (i.e., trabeculectomy, phacoemulsification), characterizing fellows’ subjective perceptions of improvement throughout the academic year prospectively, and inclusion of fellow-performed cases at other tertiary academic medical centers. In this study, we show that surgical efficiency, as assessed using the surrogate of operative case times, improves over the course of the academic year among glaucoma fellows.

Précis

This retrospective analysis of glaucoma fellows at two academic institutions over a 5-year period demonstrates that surgical tube shunt case times decrease over the academic year. These findings may be used to guide operative scheduling of trainee surgical cases at academic centers.

Financial Support

None.

Conflict of Interest

None declared.
References
12 Winter TW, Olson RJ, Larson SA, Oetting TA, Longmuir SQ. Resident and fellow participation in strabismus surgery: effect of level of training and number of assistants on operative time and cost. Ophthalmology 2014;121(03):797–801