J Pediatr Intensive Care 2024; 13(01): 001-006
DOI: 10.1055/s-0041-1732345
Review Article

Airway Management of Critically Ill Pediatric Patients with Suspected or Proven Coronavirus Disease 2019 Infection: An Intensivist Point of View

1   Unidad de Paciente Crítico Pediátrico, Hospital el Carmen de Maipú, Santiago, Chile
2   Escuela de Medicina, Universidad Finis Terrae, Santiago, Chile
3   Red Colaborativa Pediátrica de Latinoamérica (LARed Network), Santiago, Chile
,
1   Unidad de Paciente Crítico Pediátrico, Hospital el Carmen de Maipú, Santiago, Chile
3   Red Colaborativa Pediátrica de Latinoamérica (LARed Network), Santiago, Chile
4   Centro de Investigación de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
› Author Affiliations

Abstract

Advanced airway management of critically ill children is crucial for novel coronavirus disease 2019 (COVID-19) management in the pediatric intensive care unit, whether due to shock and hemodynamic collapse or acute respiratory failure. In this article, intubation is challenging due to the particularities of children's physiology and the underlying disease's pathophysiology, especially when an airborne pathogen, like COVID-19, is present. Unfortunately, published recommendations and guidelines for COVID-19 in pediatrics do not address in-depth endotracheal intubation in acutely ill children. We discussed the caveats and pitfalls of intubation in critically ill children.

Authors' Contributions

F.D. drafted the manuscript. P.C. and F.D. reviewed the topics discussed, prepared the manuscript, and approved the final version of the manuscript.




Publication History

Received: 08 May 2021

Accepted: 27 June 2021

Article published online:
26 July 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rimensberger PC, Kneyber MCJ, Deep A. et al; European Society of Pediatric and Neonatal Intensive Care (ESPNIC) Scientific Sections' Collaborative Group. Caring for critically ill children with suspected or proven coronavirus disease 2019 infection: recommendations by the scientific sections' collaborative of the european society of pediatric and neonatal intensive care. Pediatr Crit Care Med 2021; 22 (01) 56-67
  • 2 Álvarez Z P, Larios G G, Toro R L. et al. Recommendation for the recognition, management and follow up of cardiovascular compromise in patients with pediatric multisystemic inflammatory syndrome associated with COVID-19 (PIMS-CT). Position statement of Chilean Scientific Societies [in Spanish]. Rev Chil Pediatr 2020; 91 (06) 982-990
  • 3 Carlotti APCP, Carvalho WB, Johnston C, Rodriguez IS, Delgado AF. COVID-19 diagnostic and management protocol for pediatric patients. Clinics (São Paulo) 2020; 75: e1894
  • 4 Kache S, Chisti MJ, Gumbo F. et al. COVID-19 PICU guidelines: for high- and limited-resource settings. Pediatr Res 2020; 88 (05) 705-716
  • 5 Matava CT, Kovatsis PG, Lee JK. et al; PeDI-Collaborative. Pediatric airway management in COVID-19 patients: consensus guidelines from the Society for Pediatric Anesthesia's Pediatric Difficult Intubation Collaborative and the Canadian Pediatric Anesthesia Society. Anesth Analg 2020; 131 (01) 61-73
  • 6 Khan L. SARS-CoV-2 infection in children: special considerations. Pediatr Ann 2020; 49 (10) e407-e412
  • 7 Miao H, Li H, Yao Y. et al. Update on recommendations for the diagnosis and treatment of SARS-CoV-2 infection in children. Eur J Clin Microbiol Infect Dis 2020; 39 (12) 2211-2223
  • 8 Gallo Marin B, Aghagoli G, Lavine K. et al. Predictors of COVID-19 severity: a literature review. Rev Med Virol 2021; 31 (01) 1-10
  • 9 Tsabouri S, Makis A, Kosmeri C, Siomou E. Risk factors for severity in children with coronavirus disease 2019: a comprehensive literature review. Pediatr Clin North Am 2021; 68 (01) 321-338
  • 10 Shane AL, Sato AI, Kao C. et al. A pediatric infectious diseases perspective of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and novel coronavirus disease 2019 (COVID-19) in children. J Pediatric Infect Dis Soc 2020; 9 (05) 596-608
  • 11 Harwood R, Allin B, Jones CE. et al; PIMS-TS National Consensus Management Study Group. A national consensus management pathway for paediatric inflammatory multisystem syndrome temporally associated with COVID-19 (PIMS-TS): results of a national Delphi process. Lancet Child Adolesc Health 2021; 5 (02) 133-141
  • 12 Chao JY, Derespina KR, Herold BC. et al. Clinical characteristics and outcomes of hospitalized and critically ill children and adolescents with coronavirus disease 2019 at a tertiary care medical center in New York City. J Pediatr 2020; 223: 14-19.e2
  • 13 Bustos B R, Jaramillo-Bustamante JC, Vasquez-Hoyos P, Cruces P, Díaz F. Pediatric inflammatory multisystem syndrome associated with SARS-CoV-2: a case series quantitative systematic review. Pediatr Emerg Care 2021; 37 (01) 44-47
  • 14 González-Dambrauskas S, Vásquez-Hoyos P, Camporesi A. et al; Critical Coronavirus and Kids Epidemiology Cake Study. Pediatric critical care and COVID-19. Pediatrics 2020; 146 (03) e20201766
  • 15 Nishisaki A, Turner DA, Brown III CA. et al. National Emergency Airway Registry for Children (NEAR4KIDS). Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network: a national emergency airway registry for children: landscape of tracheal intu-bation in 15 PICUs. Crit Care Med 2013; 41 (03) 874-885
  • 16 Shiima Y, Berg RA, Bogner HR, Morales KH, Nadkarni VM, Nishisaki A. National Emergency Airway Registry for Children Investigators. Cardiac arrests associated with tracheal intubations in PICUs: a multicenter cohort study. Crit Care Med 2016; 44 (09) 1675-1682
  • 17 Nguyen LH, Drew DA, Graham MS. et al; COronavirus Pandemic Epidemiology Consortium. Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. Lancet Public Health 2020; 5 (09) e475-e483
  • 18 Mutambudzi M, Niedwiedz C, Macdonald EB. et al. Occupation and risk of severe COVID-19: prospective cohort study of 120 075 UK Biobank participants. Occup Environ Med 2020; 78: 307-314
  • 19 Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One 2012; 7 (04) e35797
  • 20 Sud SR. COVID-19 and keeping clean: a narrative review to ascertain the efficacy of personal protective equipment to safeguard health care workers against SARS-CoV-2. Hosp Pediatr 2020; 10 (07) 570-576
  • 21 Balikai SC, Badheka A, Casey A. et al. Simulation to train pediatric ICU teams in endotracheal intubation of patients with COVID-19. Pediatr Qual Saf 2020; 6 (01) e373
  • 22 Munzer BW, Bassin BS, Peterson WJ. et al. In-situ simulation use for rapid implementation and process improvement of COVID-19 airway management. West J Emerg Med 2020; 21 (06) 99-106
  • 23 Diaz MCG, Dawson K. Use of simulation to develop a COVID-19 resuscitation process in a pediatric emergency department. Am J Infect Control 2020; 48 (10) 1244-1247
  • 24 Graciano AL, Tamburro R, Thompson AE, Fiadjoe J, Nadkarni VM, Nishisaki A. Incidence and associated factors of difficult tracheal intubations in pediatric ICUs: a report from National Emergency Airway Registry for Children: NEAR4KIDS. Intensive Care Med 2014; 40 (11) 1659-1669
  • 25 Lee JH, Turner DA, Kamat P. et al; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI), National Emergency Airway Registry for Children (NEAR4KIDS). The number of tracheal intubation attempts matters! A prospective multi-institutional pediatric observational study. BMC Pediatr 2016; 16: 58
  • 26 Gálvez JA, Acquah S, Ahumada L. et al. Hypoxemia, bradycardia, and multiple laryngoscopy attempts during anesthetic induction in infants: a single-center, retrospective study. Anesthesiology 2019; 131 (04) 830-839
  • 27 Lim WY, Wong P. Supraglottic airways in the management of COVID-19 patients. Anaesth Crit Care Pain Med 2020; 39 (05) 589-590
  • 28 Hall D, Steel A, Heij R, Eley A, Young P. Videolaryngoscopy increases ‘mouth-to-mouth’ distance compared with direct laryngoscopy. Anaesthesia 2020; 75 (06) 822-823
  • 29 Sorbello M, El-Boghdadly K, Petrini F. Airway management in COVID-19: in the den of the beast. Anesth Analg 2020; 131 (01) e38-e40
  • 30 Gupta A, Sharma R, Gupta N. Evolution of videolaryngoscopy in pediatric population. J Anaesthesiol Clin Pharmacol 2021; 37 (01) 14-27
  • 31 Saito T, Taguchi A, Asai T. Videolaryngoscopy for tracheal intubation in patients with COVID-19. Br J Anaesth 2020; 125 (03) e284-e286
  • 32 Peyton J, Park R, Staffa SJ. et al; PeDI Collaborative Investigators. A comparison of videolaryngoscopy using standard blades or non-standard blades in children in the Paediatric Difficult Intubation Registry. Br J Anaesth 2021; 126 (01) 331-339
  • 33 Sun Y, Lu Y, Huang Y, Jiang H. Pediatric video laryngoscope versus direct laryngoscope: a meta-analysis of randomized controlled trials. Paediatr Anaesth 2014; 24 (10) 1056-1065
  • 34 Javaherforooshzadeh F, Gharacheh L. The comparison of direct laryngoscopy and video laryngoscopy in pediatric airways management for congenital heart surgery: a randomized clinical trial. Anesth Pain Med 2020; 10 (03) e99827
  • 35 Norris A, Armstrong J. Comparative videolaryngoscope performance in children: data from the Pediatric Difficult Intubation Registry. Br J Anaesth 2021; 126 (01) 20-22
  • 36 Noor Azhar M, Bustam A, Poh K. et al. COVID-19 aerosol box as protection from droplet and aerosol contaminations in healthcare workers performing airway intubation: a randomised cross-over simulation study. Emerg Med J 2020; 38 (02) 111-117
  • 37 Sorbello M, Rosenblatt W, Hofmeyr R, Greif R, Urdaneta F. Aerosol boxes and barrier enclosures for airway management in COVID-19 patients: a scoping review and narrative synthesis. Br J Anaesth 2020; 125 (06) 880-894
  • 38 Allen B, Gardner C, O'Neill C, Gibbs M. Use of drape/patient covering during potentially aerosolizing procedures. Am J Emerg Med 2021; 39: 227-228
  • 39 Begley JL, Lavery KE, Nickson CP, Brewster DJ. The aerosol box for intubation in coronavirus disease 2019 patients: an in-situ simulation crossover study. Anaesthesia 2020; 75 (08) 1014-1021
  • 40 Ponnappan KT, Sam AF, Tempe DK, Arora MK. Intubation box in the current pandemic - helps or hinders?. Anaesth Crit Care Pain Med 2020; 39 (05) 587-588
  • 41 Mizuguchi S, Motomura Y, Maki J. et al. Tracheal size and morphology on the reconstructed CT imaging. Pediatr Crit Care Med 2019; 20 (08) e366-e371
  • 42 Dave MH, Kemper M, Schmidt AR, Both CP, Weiss M. Pediatric airway dimensions-a summary and presentation of existing data. Paediatr Anaesth 2019; 29 (08) 782-789
  • 43 Reiter PD, Roth J, Wathen B, LaVelle J, Ridall LA. Low-dose epinephrine boluses for acute hypotension in the PICU. Pediatr Crit Care Med 2018; 19 (04) 281-286
  • 44 Li S, Hsieh T-C, Rehder KJ. et al; for National Emergency Airway Registry for Children (NEAR4KIDS) and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Frequency of desaturation and association with hemodynamic adverse events during tracheal intubations in PICUs. Pediatr Crit Care Med 2018; 19 (01) e41-e50
  • 45 Benumof JL, Dagg R, Benumof R. Critical hemoglobin desaturation will occur before return to an unparalyzed state following 1 mg/kg intravenous succinylcholine. Anesthesiology 1997; 87 (04) 979-982
  • 46 Napolitano N, Laverriere EK, Craig N. et al; National Emergency Airway Registry for Children (NEAR4KIDS) and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI). Apneic oxygenation as a quality improvement intervention in an academic PICU. Pediatr Crit Care Med 2019; 20 (12) e531-e537
  • 47 Trachsel D, Svendsen J, Erb TO, von Ungern-Sternberg BS. Effects of anaesthesia on paediatric lung function. Br J Anaesth 2016; 117 (02) 151-163
  • 48 Lee BA, Shin WJ, Jeong D, Choi JM, Gwak M, Song IK. Use of a high-flow nasal cannula in a child with a functional single ventricle and difficult airway. J Cardiothorac Vasc Anesth 2021; 35 (07) 2128-2131
  • 49 Jones P, Dauger S, Denjoy I. et al. The effect of atropine on rhythm and conduction disturbances during 322 critical care intubations. Pediatr Crit Care Med 2013; 14 (06) e289-e297
  • 50 Jones P, Peters MJ, Pinto da Costa N. et al. Atropine for critical care intubation in a cohort of 264 children and reduced mortality unrelated to effects on bradycardia. PLoS One 2013; 8 (02) e57478
  • 51 Carroll CL, Spinella PC, Corsi JM, Stoltz P, Zucker AR. Emergent endotracheal intubations in children: be careful if it's late when you intubate. Pediatr Crit Care Med 2010; 11 (03) 343-348
  • 52 Jones P. The therapeutic value of atropine for critical care intubation. Arch Dis Child 2016; 101 (01) 77-80
  • 53 Sagarin MJ, Chiang V, Sakles JC. et al; National Emergency Airway Registry (NEAR) investigators. Rapid sequence intubation for pediatric emergency airway management. Pediatr Emerg Care 2002; 18 (06) 417-423
  • 54 Blumer JL. Clinical pharmacology of midazolam in infants and children. Clin Pharmacokinet 1998; 35 (01) 37-47
  • 55 Zelicof-Paul A, Smith-Lockridge A, Schnadower D. et al. Controversies in rapid sequence intubation in children. Curr Opin Pediatr 2005; 17 (03) 355-362
  • 56 Miller KA, Nagler J. Advances in emergent airway management in pediatrics. Emerg Med Clin North Am 2019; 37 (03) 473-491
  • 57 Guihard B, Chollet-Xémard C, Lakhnati P. et al. Effect of rocuronium vs succinylcholine on endotracheal intubation success rate among patients undergoing out-of-hospital rapid sequence intubation: a randomized clinical trial. JAMA 2019; 322 (23) 2303-2312
  • 58 Sieber TJ, Zbinden AM, Curatolo M, Shorten GD. Tracheal intubation with rocuronium using the “timing principle”. Anesth Analg 1998; 86 (05) 1137-1140
  • 59 Lee SK, Hong JH, Kim AR. Is the rapid sequence induction possible with 0.6 mg/kg rocuronium in pediatric patient?. Korean J Anesthesiol 2010; 58 (01) 20-24