Occurrence of Adrenal Suppression in Patients Having Sepsis in Indian Population and Impact of Corticosteroid Supplementation on Its Overall Survival

Kamalakanta Swain, Sikata Nanda, Sarat Chandra Jayasingh, Sidharth Sraban Routray, Avijit Swain, Padmalaya Sahoo

1Department of Anaesthesiology, S.C.B. Medical College and Hospital, Cuttack, Odisha, India
2Department of Community Medicine, S.C.B. Medical College and Hospital, Cuttack, Odisha, India
3Department of Surgical Gastroenterology, S.C.B. Medical College and Hospital, Cuttack, Odisha, India

Address for correspondence Sidharth Sraban Routray, MD, Department of Anaesthesiology and Critical Care, S.C.B. Medical College and Hospital, Cuttack, Odisha 753007, India (e-mail: drsidharth74@gmail.com).

Published online: 2021-07-12

Abstract

Objective Our aim was to estimate the occurrence of adrenal suppression in critically ill patients with septic shock who have got admission in intensive care unit and to evaluate the effectiveness of hydrocortisone in these patients in relation to mortality of patient, development of septic shock, and effect on total leucocyte count.

Methods Serum cortisol was measured in 120 patients with sepsis. Patients with decreased cortisol level were split into two groups (group A and B). Group A received 50 mg of hydrocortisone 6 hourly and group B was given matching placebo. At day 7, serum cortisol level was estimated for both A and B groups. The results were calculated and compared with relation to incidence of adrenal insufficiency, development of septic shock, effect on total leucocyte count, and survival at 28 days.

Results The occurrence of adrenal suppression in patients having sepsis in our study was 44 out of 120 patients, that is, 36.6%. After supplementation of corticosteroid for 7 days the mean value of serum cortisol of group A was 40.38 ± 8.44 µg/dL and group B was 24.30 ± 6.47 µg/dL (p < 0.001). At day 7, in group A, 22.7% developed septic shock, whereas in group B, 36.4% developed septic shock (p < 0.001). In group A and B, mortality rate of the patients at 28 days was 18.2 and 22.7%, respectively.

Conclusion Hydrocortisone supplementation in critically ill patients with low random basal serum cortisol level with sepsis does not significantly improve the overall survival.

Keywords
► adrenal suppression
► sepsis
► Indian population
► corticosteroid

Introduction

Sepsis is a systemic life-threatening illness, which is marked by inflammation and abnormal defense response to infection in host. The clinical profile of patients varies from mild symptoms to very severe symptoms and signs. Septic shock and multigorgan dysfunction are usual complications. In the developed world, occurrence of septic shock was 8.2% of all

DOI https://doi.org/10.1055/s-0041-1731916
ISSN 2455-7420
intensive care unit (ICU) admissions, in which the death rate was 55 to 62.1%. Sepsis is currently the most significant cause of mortality in all ICUs worldwide. Mortality rate is as high as 30 to 50% in spite of advanced treatment. So, there is need for further investigations and early goal-directed treatment. The debate about supplementation of steroids in management of septic shock was started in 1915 when suprarenal apoplexy was diagnosed. Cahalane and Waters in their study found hemorrhage in adrenal gland in a patient of meningococcal septicaemia. They concluded that adrenal hemorrhage resulted in acute adrenal suppression leading to death. Many authors have studied the role of steroid supplementation in the management of septic shock but study outcomes were controversial. Annew and Briegel et al. first studied the role of hypothalamic-pituitary-adrenal (HPA) axis in septic shock. They found higher rates of adrenal suppression in these patients in whom glucocorticoid supplementation increased the longevity. There was very few data in literature regarding the occurrence of adrenal suppression in Indian population having septic shock. The primary aim of this research was to evaluate the incidence of adrenal suppression in patients with sepsis, as measured by random serum cortisol levels. The secondary objectives were to evaluate the impact of such dysfunction, and eventually to predict the usefulness of serum cortisol testing and the effectiveness of hydrocortisone in these patients in relation to mortality of patient, development of septic shock, and effect on total leucocyte count (TLC).

Methods

Our trial is a randomized and prospective trial conducted after approval from the Institutional Ethical Committee from August 2018 to November 2020 at central ICU, S.C.B. Medical College and Hospital, Odisha, India. All the patients have given written and informed consent.

Study Setting
This study was conducted in the central ICU of the S.C.B. Medical College and Hospital.

Study Design
This is a prospective randomized study.

Inclusion Criteria
1. Patients with evidence of sepsis.
2. Patients of both sexes.
3. Age group of 18 to 65 years.
4. Serum albumin > 2.5 g/dL.

Exclusion Criteria
1. Patients < 18 years and > 65 years.
2. Patients with a known disease involving the HPA axis.
3. Patients already on some form of glucocorticoid treatment.
4. Patients with multiorgan dysfunction syndrome.
5. Patients with established septic shock on inotropic support.
6. Serum albumin < 2.5 g/dL.

Statistical Software
Data analysis was done using statistical software SPSS 22.0. Continuous measurements data was presented as mean.
± standard deviation. Categorical measurement data was presented as number (%). Randomization among the study participants was done using computer-generated random number in 1:1 sequence. Student’s t-test was used for continuous data. Homogeneity of variance was tested by Leven’s test. Fisher’s exact test was used for categorical data. A p-value of < 0.001 was taken as highly significant.

Results
A total of 120 symptomatic patients of either sex, aged 18 to 65 years who were found positive for sepsis were included in this study. Random serum cortisol level was estimated in all these patients at the day of admission. Out of these 120 patients adrenal insufficiency is found in 44 patients (males 26 and females 18). These 44 patients were randomized into two groups: group A and group B. Group A received 50 mg of hydrocortisone 6 hourly and group B was given matching placebo. At day 7, serum cortisol level was estimated for both group A and group B. The incidence of development of septic shock, effect on TLC, and survival at 28 days/death was recorded. In both the groups, empirical broad spectrum antibiotics were started soon after recruitment in the study after sending the samples for bacterial culture and sensitivity. The occurrence of adrenal suppression in patients with sepsis in our study was 44 out of 120 patients, that is, 36.6% (►Fig. 1). There was no notable variation between the two groups with regard to pulse rate, breath rate, systolic blood pressure, diastolic blood pressure, and temperature on day 1(►Table 1). The mean value of serum cortisol at day 1 in group A was 10.36 ± 2.69 µg/dL and in group B was 10.73 ± 2.93 µg/dL with p-value = 0.670. So, both these groups were comparable with respect to serum cortisol level at day 1. After exogenous supplementation of corticosteroid for 7 days the mean value of serum cortisol of group A was 40.38 ± 8.44 µg/dL and group B was 24.30 ± 6.47 µg/dL (p < 0.001)(►Table 2). At day 1, mean TLC of group A was 14,336 ± 2593.87/mm³ and that of group B was 14,350 ± 2351/mm³ with p-value = 0.986. So both these groups were comparable with respect to TLC at day 1. After 7 days of corticosteroid therapy mean TLC value of group A was 12136.24 ± 2611.84/mm³ and that of group B was 13645.45 ± 4482.95/mm³. Though there is some decrease in TLC in group A in contrary to group B but it was not significant (►Fig. 2). At day 7 in group A, 5 out of 22 patients, that is, 22.7%, there was development of septic shock. Whereas in group B, 8 out of 22 patients, that is, 36.4%, went into septic shock. There was no notable variation seen among group A and group B with respect to development of septic shock at day 7 (►Fig. 3). Mortality rate of the patients at day 28 in group A was 18.2% (4 out of 22) and in group B was 22.7% (5 out of 22) which was statistically not significant (►Fig. 4).

![Fig. 1 Occurrence of adrenal suppression.](image1)

![Fig. 2 Total leucocyte count (TLC) in two groups.](image2)

![Fig. 3 Development of septic shock in patients in the two groups at day 7.](image3)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Group A (mean ± SD)</th>
<th>Group B (mean ± SD)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (bpm)</td>
<td>110.09 ± 8.25</td>
<td>108.55 ± 7.74</td>
<td>0.525</td>
</tr>
<tr>
<td>Respiratory rate (min)</td>
<td>18.41 ± 2.36</td>
<td>17.77 ± 2.00</td>
<td>0.340</td>
</tr>
<tr>
<td>SBP (mm Hg)</td>
<td>105.55 ± 9.42</td>
<td>105.09 ± 9.58</td>
<td>0.643</td>
</tr>
<tr>
<td>DBP (mm Hg)</td>
<td>68.27 ± 5.10</td>
<td>67.91 ± 4.60</td>
<td>0.805</td>
</tr>
<tr>
<td>Temperature (°F)</td>
<td>102.10 ± 1.74</td>
<td>102.38 ± 1.23</td>
<td>0.539</td>
</tr>
</tbody>
</table>

Abbreviations: bpm, beats per minute; DBP, diastolic blood pressure; SBP, systolic blood pressure; SD, standard deviation.
patients nor produced any improvement in shock, which is similar to our study. In a study by Venkatesh et al\(^2\) (ADRENAL study), they concluded that the use of hydrocortisone did not result in any improvement in death rate at 90 days. But there was notable betterment in morbidity of critically ill patients. Those patients treated with hydrocortisone had a reduced vasopressor requirement and lesser days of mechanical ventilation which resulted in shorter ICU stay. But there was no difference in parameters like mortality after 28 days, return of shock, and requirement of dialysis. Keh et al\(^2\) tested hydrocortisone therapy in critically ill patients having severe sepsis and concluded that hydrocortisone did not produce any improvement in septic shock. Yildiz et al\(^9\) concluded that hydrocortisone supplementation reduced the mortality rates of the patients who were critically ill but it was not significant. The above studies were in agreement with our study. In contrast to our study, Rady et al\(^10\) concluded that corticosteroids supplementation increased mortality and morbidity in critically ill patients as it increased the susceptibility to nosocomial infections, and exacerbated critical illness neuropathy and myopathy. So each critically ill patient must be evaluated carefully for corticosteroids supplementation.

Conclusion

We concluded that occurrence of adrenal suppression in seriously ill patients with sepsis in our set up is 36.67%. The rise in serum cortisol level after corticosteroid supplementation has no role in prevention of septic shock. Hydrocortisone supplementation in critically ill patients having low random basal serum cortisol level with sepsis does not significantly improve the overall survival.

Conflict of Interest

None declared.

References

Table 2

<table>
<thead>
<tr>
<th>Serum cortisol (µg/dL)</th>
<th>Group A (mean ± SD)</th>
<th>Group B (mean ± SD)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>At day 1</td>
<td>10.36 ± 2.69</td>
<td>10.73 ± 2.93</td>
<td>0.670</td>
</tr>
<tr>
<td>At day 7</td>
<td>40.38 ± 8.44</td>
<td>24.30 ± 6.47</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Abbreviation: SD, standard deviation.

Overall Survival of Patients

![Overall survival of patients studied in two groups at day 28.](image)
septic shock and after complete recovery. Intensive Care Med 1996;22(9):894–899