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Introduction

Bicuspid aortic valve (BAV) is the most common valvular
congenital heart disease, with a prevalence of 0.5 to 2% in
the general population.1 BAV was first described more than
500 years ago by Leonardo da Vinci, illustrating the valve
anatomy. Since data on BAV clinical significance have been
established, a substantial proportion of aortic valve diseases
were found to be due to BAV, regardless of a patient’s age.2

Patients with BAV have an increased risk of developing
aortic valve diseases such as calcification and stenosis,
regurgitation, and infective endocarditis. Aortopathies are
also prevalent among BAV patients. These include coarcta-
tion of the aorta, aortic aneurysm, and dissection. BAV

patients are prone to require aortic valve replacement
(AVR) and aortic surgery, procedures that carry substantial
risks and costs.3 Population-based studies have found a 53%
risk for AVR and a 25% risk for aortic surgery during 25-year
follow-up, and the risk for aortic dissection was eight times
higher than in the general population.4 Moreover, the mean
age for valve replacement or surgical intervention for aortic
dilation is markedly younger for BAV patients compared
with patients with tricuspid aortic valve.2,4 BAV was esti-
mated to cause more morbidity and mortality than the
combination of all other congenital heart defects, generat-
ing a considerable health burden to both patients and the
health system.5
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Abstract Bicuspid aortic valve (BAV) is the most common valvular congenital heart disease, with
a prevalence of 0.5 to 2% in the general population. Patients with BAV are at risk for
developing cardiovascular complications, some of which are life-threatening. BAV has a
wide spectrum of clinical presentations, ranging from silent malformation to severe
and even fatal cardiac events. Despite the significant burden on both the patients and
the health systems, data are limited regarding pathophysiology, risk factors, and
genetics. Family studies indicate that BAV is highly heritable, with autosomal dominant
inheritance, incomplete penetrance, variable expressivity, and male predominance.
Owing to its complex genetic model, including high genetic heterogenicity, only a few
genes were identified in association with BAV, while the majority of BAV genetics
remains obscure. Here, we review the different forms of BAV and the current data
regarding its genetics. Given the clear heritably of BAV with the potential high impact
on clinical outcome, the clinical value and cost effectiveness of cascade screening are
discussed.
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BAV can be classified as sporadic BAV (sporadic isolated
defect), familial nonsyndromic BAV (nsBAV; in clusters with-
in families without associated anomaly), or syndromic BAV
(considered familial and associated with other anomalies
including cardiovascular defects). The method of choice for
diagnosis and follow-up is echocardiography (►Fig. 1).

BAV clinical presentation varies significantly from a silent
disease to severe life-threatening complications, even at a
young age. Little is known about most dimensions of BAV,
including the identity of the biochemical pathways involved
in its pathogenesis. The determinants of the valve morphol-
ogy and of the wide spectrum of clinical presentations and
complications over time are mostly unelucidated.

Genetic data provide a very powerful and unbiased tool
for understanding the basic mechanisms culminating in
valve dysfunction and disease. Better understanding of the
molecular processes of the disease may lead to future
development of novel personalized management
approaches, ultimately leading to individual risk stratifica-
tion, sparing unnecessary interventions to low-risk patients,
and preventing potentially fatal complications for patients at
high risk.

Here, we summarize the current data regarding BAV
genetics and discuss its potential clinical implication.

Bicuspid Aortic Valve Genetics: Many Links
Yet an Unsolved Riddle

It is well established that BAV has a significant genetic
component.6,7 Various studies demonstrated familial clus-
tering of BAV.7 The prevalence of BAVwas found to be 10-fold
higher among first-degree relatives of an affected individual
compared with the general population.8 In family studies,
the heritability index for BAV, representing the degree of
phenotypic variance explained by inherited rather than
environmental factors, was found to be as high as 89%,
suggestingmarked involvement of genetic factors on disease
development.7 Among familial BAV, most pedigrees suggest
an autosomal-dominant inheritance pattern with incom-
plete penetrance and male predominance in a 3:1 ratio8

(►Fig. 2). According to Mendelian genetics, autosomal-dom-
inant inheritance pattern implies that half of first-degree
relatives are expected to carry the disease-causing allele.

Accounting for 50% penetrance (i.e., half of the carriers will
demonstrate clinical disease), 25% of first-degree relatives
are expected to be clinically affected with BAV. However, the
actual rate of BAV among first degree relatives in family
studies ranges from 6 to 30%. This large range, along with the
wide spectrum of structural and clinical phenotypes, is
thought to be the result of the complexity of the develop-
mental mechanisms at play in aortic valve development,
involving genetic, epigenetic, and environmental factors
(►Fig. 3).

A high prevalence rate of aorthopathies, including aneu-
rysm, dissection, and aortic coarctation, has been demon-
strated among BAV patients and their relatives. Both the
aortic root and the aortic valve have the same specific
embryologic origin: the cardiac neural crest and
the second heart field.9 Thoracic aortic aneurysm (TAA)
frequently affects patients with BAV, or their first-degree
relatives with a morphologically normal valve. TAA and BAV
are thus thought to have a common genetic etiology.6 This
observation adds support to the concept that BAV does not
represent a dichotomous phenotype but would rather be
integrated in a continuous spectrum of phenotypic
expressions.

Nonsyndromic Bicuspid Aortic Valve Genetics
Since 2005,with the identification ofNOTCH1 in nsBAVcases,
fewother geneswere found to be associatedwith nsBAVwith
varying degrees of supporting evidence (►Table 1). Each of
these genes explains only a small percentage of the overall
nsBAV prevalence and involves differentmolecular pathways
that do not necessarily assemble into one common mecha-
nism. In light of its high phenotypic and genotypic hetero-
geneity, establishing a genetic causality for BAV is
challenging. Causality can only be determined when the
mutation has a robust effect, the familial segregation and
linkage analyses are strong, and when the association is
supported by experimental and functional models.10

NOTCH pathway: the first and currently single gene
considered definitively causal for nsBAV is NOTCH1.11

NOTCH1 signaling is a highly conserved pathway of signal
transduction, leading to transcription of endothelial and
vascular smooth muscle cells. Altered NOTCH signaling is a
well-known cause of human cardiovascular disease. NOTCH1

Fig. 1 Transthoracic echocardiogram of bicuspid aortic valve (BAV), short axis view. (A) Diastolic image demonstrating a raphe that may mimic
tricuspid valve. (B) Systolic image demonstrating only two leaflets with elliptical opening pattern. Morphology assessment of BAV must include
systolic imaging, as diastolic imaging may be misleading.40
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Fig. 2 Examples of bicuspid aortic valve pedigrees, consistent with autosomal dominant inheritance, and low penetrance, as reflected by the
limited number of clinically affected individuals.40

Fig. 3 Illustration of the underling process in bicuspid aortic valve (BAV) development. Involvement of one or more genes is the primary insult.
This might be modulated by epigenetic factors, such as chromatin modifications and DNA methylation affecting genetic regulatory elements.
Environmental factors, such as longstanding abnormal blood flow and hypertension, may also contribute to BAV outcome. The epigenetics
illustration was modified from the ENCODE portal (https://www.encodeproject.org/).
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genetic variants were demonstrated to be associated with
the development of calcific aortic valve stenosis, with or
without BAV. Yet, this gene is estimated to be involved in only
approximately 5 to 10% of nsBAV cases, leaving the vast
majority of the genetic causes of BAV unexplained. Other
members of the NOTCH1 pathway (►Fig. 4) were linked to
BAV and to other left-ventricular outflow tract obstruction
pathologies, includingmastermind-like transcriptional coac-
tivator 1 (MAML1), rho GTPase activating protein 31 (ARH-
GAP31), jumonji andAT-rich interaction domain containing 2

(JARID2), and SWI/SNF-related matrix-associated actin-de-
pendent regulator of chromatin, subfamily A, member 4
(SMARCA4).12

TGF-β Pathway: The SMAD family member 6 (SMAD6)
gene encodes a signal transduction protein highly expressed
in the embryonic heart and involved in many pathways,
including transforming growth factor beta (TGF-β). This
pathway plays a key role in vascular matrix remolding and
was linked to connective tissue disorders (►Fig. 4). The
association of SMAD6 with BAV was shown by targeted

Fig. 4 Bicuspid aortic valve (BAV)–associated pathways. (A) NOTCH pathway. A graphical representation of NOTCH pathway activation: (1)
NOTCH receptor extracellular domain binds to its ligand’s extracellular domain; (2) Notch ligand ubiquitination allowing endocytosis of the
ligand in the signal-sending cell; (3) then, the notch receptor undergoes sequential proteolytic cleavages that result in the release of the Notch
intracellular domain (NICD) and the notch extracellular domain; and (4) the NICD translocates to the nucleus and acts as a transcriptional
regulator. �Genes associated with BAV: MIB1 KO mice developed; JAG1 was associated with BAV in family and mice studies; Variants in SMARCA4,
JARID2 andMAMLwere identified in familial BAV. (B) TGF-β signaling pathway. The interaction between the TGF-β signaling pathway and the SMAD
proteins: (1) TGF-β binding to its receptors triggering the signaling activation in the receiving cell; among others modifiers, the signal
transduction is regulated by the SMAD proteins, while SMAD6 functions as the negative regulator; and (3) nuclear regulation affects cell
proliferation, differentiation and growth. JARID2, Jumonji and AT-rich interaction domain containing 2; MAML, mastermind-like transcriptional
coactivator;MIB1, mindbomb 1 SMARCA4, SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A, member 4;
TGF-β, transforming growth factor beta 1. Image modified from Guo et al.48

Table 1 Main genes associated with bicuspid aortic valve

Main genes associated with BAV in humans, and the
methodology used in each study for gene identification

Main genes associated with BAV in mice, with
the percentage of mice that devloped BAV

Humans genes Genetic approach Mouse genes Prevalence of BAV (%)

NOTCH111 Linkage analysis Acvr1/Alk136 78–83

GATA419 Genome-wide association study Gata518 25

GATA520 Target gene sequencing Gata646 25

GATA621 Family study Matr347 12

NKX2–523 Family study Nkx2–535 2–20

TBX2014 Copy number variation analysis Nos332 42

SMAD613 Candidate gene resequencing Robo1/Robo233 100

ROBO424 Family study (whole exome sequencing) Robo424 15

Abbreviation: BAV, bicuspid aortic valve.
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resequencing of individuals with BAV and TAA, contributing
to the development of BAV/TAA in 2.5% of the cases.13

Recently, T-box transcription factor 20 (TBX20) was identi-
fied as a possible contributing gene for BAV using copy
number variation analysis, explaining 1% of the BAV/TAA
cases.14 This gene was found to be related to SMAD6 in in-
vivo studies, and was described in association to other
congenital cardiac malformations.15 Of note, other compo-
nents of the TGFβ pathway (TGFβ2, TGF-β3, TGF-ßR1, TGF-
ßR2, and SMAD3) are involved in syndromic aortopathies
where BAV is present in 5 to 30% of the cases.16,17

The GATA family: GATA binding protein genes encode zinc-
finger transcription factors that play a role in heart valve
differentiation.18 GATA4 was recently identified as a predis-
posing gene for BAV in a human genome-wide association
study (GWAS) involving 466 BAV cases and 4,660 controls,
with odds ratios ranging from 1.4 to 2.4 depending on the
variant.19 Rare variants of theGATA5 gene, highly expressed in
the endocardium, were also linked to nsBAV,20 although these
results have not been consolidated in subsequent studies. A
GATA6 disruptive variant was found in an nsBAV family,21 and
in vitro studies demonstrated that GATA6 haploinsufficiency
interrupts theaorticvalve remodelingandextracellularmatrix
composition.22 Loss-of-functionmutations in theNK2Homeo-
box 5 (NKX2.5) gene, which encodes a homeodomain-contain-
ing transcription factor that is involved in the aortic valve
development, was found in a nsBAV family to disrupt the
interaction between NKX2.5 and GATA5, supporting involve-
ment of both genes in the pathology.23

The roundabout guidance receptor 4 (ROBO4) gene is
involved in endothelial function. Rare variants in the gene
were identified by whole exome sequencing in a BAV/TAA
family study.24

Genetic loci linked to BAV: linkage analyses demonstrated
the involvement of human chromosomal regions 18q, 5q,
and 13q in BAV alone, and between BAV/TAA and human
chromosomal regions 15q25–26,25 suggesting that uneluci-
dated genetic defects remain to be investigated.

Syndromic Bicuspid Aortic Valve Genetics
BAV can be syndromic, that is, presenting within a constella-
tion of cardiac and noncardiac anomalies (►Table 2). The
highest occurrence of BAV is found in Turner’s syndrome.
Turner’s syndrome results from complete or partial missing

of one X chromosome (45X). This leads to a complex devel-
opmental disorder, including cardiovascular anomalies. BAV
occurs in 15 to 30% of patients and often coexists with
coarctation of the aorta.26 The high prevalence of BAV in
Turner’s syndromemay be related to high diagnostic rate due
to routine cardiac imaging performed in these patients, but
may also suggest X-chromosome involvement in BAV forma-
tion. This is also supported by the 3:1 male predominance
found in BAV, leading to the hypothesis that X chromosome
gene hemizygosity (i.e., having one copy only) is involved in
BAV development.

Marfan’s syndrome (MFS) is a rather common connective
tissue disorder manifesting by aortic root dilation among
other phenomena. BAV was initially considered more preva-
lent than in the general population.27 A recent larger study
that included more than 1,400 MFS case, has demonstrated
that the prevalence of BAV was 1.8%, equivalent to the
population prevalence.28 However, BAV presentation in
MFS was associated with a more severe aortic aneurysm
phenotype necessitation repair at an earlier age.27

Loeys–Dietz syndromes are a group of connective tissue
disorders close toMFS. These syndromic aortopathies are the
consequence of abnormal TGF-β signaling, and association
with BAV was demonstrated.17

As illustrated here, the frequent cooccurrence of BAV and
aortic aneurysms in nsBAVand in sporadic BAV, is also the rule
in syndromic BAV, supporting the hypothesis that disruption
of connective tissue homeostasis is related with BAV.

BAV was also described in Shone complex, a syndrome of
multiple left heart obstructive lesions. Like nsBAV, it was also
associated with NOTCH1 mutations.29 BAV is also present in
other systemic disorders, such as DiGeorge’s syndrome
(22q11 deletion), Down’s syndrome, and Andersen’s syn-
drome, at very lower frequency. The malformation is also
reported in association with other isolated cardiovascular
disorders30 including hypoplastic left heart syndrome, co-
arctation of the aorta, ventricular septal defects, patent
ductus arteriosus, and atrial septal defects.31

Animal Models

Animal models may serve as an additional approach for
understanding BAV genetics and pathophysiology. There
are several mouse and Syrian hamster models for BAV,
some of which were developed to support candidate genes
found in humans. Of note, similarly to family studies in
humans, all animal models have demonstrated incomplete
penetrance and, in most cases, presented with other cardiac
malformations. In some, male predominance was also ob-
served.32 The main human andmouse genes involved in BAV
are listed in ►Table 1.

Notch1 knockout (KO) mice die from cardiac malforma-
tion. These mice developed severe aortic valve calcification.
Disruption of the Robo signaling pathway (Robo1 and
Robo2) in transgenic mice led to BAV development.33 This
pathway was shown to play a role in Notch regulation and
was also associated with BAV in humans. The Gata gene
family (Gata4, Gata5, and Gata6) was linked to BAV in mice,

Table 2 The main syndromes which may present with bicuspid
aortic valve (BAV), their genetic origin, and the prevalence of
BAV within each syndrome

Syndrome Genetic origin Prevalence
of BAV (%)

Turner’s syndrome Monosomy X 15–30

Marfan’s syndrome FBN1 1.8

Loeys–Dietz syndromes TGF-β pathway 10–30

Shone’s complex NOTCH1 50

Andersen’s syndrome KCNJ2 10a

aA total of 10% genotype-positive family member presented with BAV.
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as well as in humans, leading to BAV with variable pene-
trance (►Table 1). Nitric oxide synthase (Nos) produces
nitric oxide (NO) that has an important role in cell growth
and apoptosis. Mice with induced endothelial NOS-deficien-
cy demonstrated abnormal aortic valve development in-
cluding BAV.32 A significantly reduced expression of NOS
protein was demonstrated in aortic endothelial cells from
BAV patients as compared with normal valve controls.34

Nkx2–5 KO mice developed BAV among other septal and
valvular malformations.35 This gene is a notable example of
a pleiotropic genetic effect (in which one gene leads to more
than one phenotype).35 Notably, a pleiotropic effect is far
more often the rule than the exception in many congenital
heart disease genes. Tissue-specific KO of activin A receptor
type 1 (Acvr1) resulted in aortic valve disorders including
BAV, supporting the gene’s role in valvular development as
seen in TAAD/BAV human cases.36 However, there is not a
full correspondence between the genetic landscapes in mice
and in humans. As an example, ROBO4 has been involved in
BAV/TAA in humans at heterozygous state with high pene-
trance, but the effect of complete (homozygous) Robo4 loss
of function in mice shows a very low penetrance (15%) with
a variety of aortic valve defects.24

Bicuspid Aortic Valve Phenotypes: Sievers
Classification

Anatomically the bicuspid valvemorphology phenotypes are
classified according to the cusp’s fusion. A “pure” form of BAV
consists of two cusps of equal size with no raphe between
them and is relativity rare, while the more common config-
uration of bicuspid valve consists of two unequal cusps, the
larger one characterized by a raphe formed between the two
fused cusps. A rare form of unicuspidal valve is also found.
The BAV morphology type is usually defined by echocardi-
ography and is classified according to Sievers classification as
follows: type 0 (no raphe); type 1 (one raphe) with subtypes
(1) 1 LR for left–right coronary cusps fusion, (2) 1 RN for right
and noncoronary, and (3) 1 NL for noncoronary and left
coronary cusps; and type 2 (two raphes). Each morphology
type is associated with different pathologies of the valve and
the aorta, and may even affect prognosis.37 It was hypothe-
sized that the different types developed from distinct em-
bryological origins.38 Our data, as well as previously
published data, show, in a large set of pedigrees, that differ-
ent BAV types are present in a family.39,40 To date, no
correlation between Sievers type BAV and genetic status
was demonstrated. This, once again, highlights the complex-
ity of BAV genetics and phenotypic variability.

Cascade Screening: What Is the Clinical
Utility?

High heritability of BAV raises the question of “cascade
screening” of relatives of a BAV case. Cascade screening is a
method to identify individuals at risk for a genetic condition
by the process of systematic screening of first-degree rela-
tives of the indexcase. The 2014AmericanHeart Association/

American College of Cardiology (AHA/ACC) valvular heart
disease guidelines recommend clinical screening of first-
degree relatives only if the patient with BAV has an associat-
ed aortopathy or a family history of valvular heart disease or
aortopathy.41 There is no clear recommendation, however,
for screening in patients with noncomplicated BAV. The
European Society of Cardiology and the European Associa-
tion for Cardio-Thoracic Surgery guidelines for the manage-
ment of valvular heart disease consider BAV as a risk factor
for aortic regurgitation and suggest echocardiographic
screening of first-degree relatives.42 The Canadian Cardio-
vascular Society indicated screening by echocardiography of
first-degree relatives of bicuspid patients, including screen-
ing of family members in the pediatric age range.43 The
screening examination by echocardiography itself does not
involve any risk for the patient. It can detect BAV or associat-
ed pathologies at an early stage and hence prevent compli-
cations. This, however, may come at a considerable
emotional burden to the families. As described above, 6 to
30% of first-degree relatives are expected to have BAV or
related anomaly. It is currently not clear how many of these
will clinically benefit from familial screening. Cost analysis
studies have demonstrated a significant cost-effectiveness
for echocardiography screening.44,45 Additional studies are
needed to establish the best terms and timing of the optimal
screening program.

Conclusion

Even after more than 500 years of its first description by
Leonardo da Vinci, BAV still poses a great challenge to
clinicians. It presents with a wide clinical and structural
phenotypic spectrum, from a silent malformation to a
severe complicated disease with significant morbidity and
mortality. Biological research to understand BAV and its
cause, as in other cardiac malformations, is very active since
the discovery of NOTCH1 role in BAV. Complimentary
genetic approaches, including association, linkage, and can-
didate-gene studies, have allowed identification of few
other genes, accounting for only a small fraction of the
genetic weight in the disease, and our understanding
remains very limited. This is probably explained by a
complex developmental process. Epigenetic and microenvi-
ronmental factors might weight more significantly than
expected, unveiling complex inheritance including polygen-
ic involvement. Deciphering genetic models of BAV is now
the new challenge, aiming at the objective of optimizing
patient’s risk stratification and clinical management
according to the individual risk.
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