Immunomodulatory Effects of Vitamin D and Vitamin C to Improve Immunity in COVID-19 Patients

Ahmed Yaqinuddin1 Ayesha Rahman Ambia1 Raghad A. Alaujan1

1Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia

Address for correspondence Ahmed Yaqinuddin, MD, PhD, FRCP, Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Takhashusi Road, Riyadh 11533, Saudi Arabia (e-mail: ayaqinuddin@alfaisal.edu).

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection causes life-threatening respiratory illness, which has caused significant mortality and morbidity around the globe. Coronavirus disease 2019 (COVID-19) causes mild respiratory illness in most infected individuals; however, in some patients it may progress to sepsis, acute respiratory distress syndrome (ARDS), cytokine release syndrome (CRS), and multiorgan dysfunction (MODS), which results in intensive care unit (ICU) admissions and increased fatalities. Recent evidence shows that most of these comorbidities associated with COVID-19 infection are associated with dysregulation of the host immune response. Vitamins C and D have been shown to regulate immune response by decreasing the proinflammatory cytokine release from immune cells and inducing proliferation of other immune cells to robustly fight infection. This review critically evaluates the current literature on vitamins C and D in modulating an immune response in different diseases and their potential therapeutic effects in preventing complications in COVID-19 infection.

Keywords
► vitamin C
► vitamin D
► COVID-19
► immune response
► chronic diseases

Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is a zoonotic novel coronavirus originating in China, December 2019, and leading to the most unstoppable infectious disease emergency in the 21st century. With no prior immunity to the disease, most patients develop flu-like respiratory symptoms or remain asymptomatic. The wide variety of symptoms in coronavirus disease 2019 (COVID-19) from fever, dry cough, dyspnea, and dysgeusia to acute respiratory syndrome (ARDS) and cytokine storm1 makes it a tricky infectious disease to navigate and manage. So far, there have been multitudinous clinical trials on a range of treatment modalities, targeting specific constituents of the virus or the body’s immune system such as vaccines, antivirals, hydroxychloroquine, recombinant soluble angiotensin converting enzyme-2 (ACE2), type 1 interferons, convalescent plasma, corticosteroids, cytokine inhibition by monoclonal antibodies (tocilizumab, interleukin 6 [IL-6] receptor antagonist and anakinra, recombinant interleukin 1 [IL-1] receptor antagonist), intravenous immunoglobulins (IVIG), and lastly inhibition of Janus kinases (JAK).2

Even though most clinical presentations are mild, some patients may progress to sepsis, ARDS, cytokine release syndrome (CRS), or multiorgan dysfunction (MODS), leading to intensive care unit (ICU) monitoring and control.1,3 There is no specific approved treatment to prevent these comorbidities; vaccines are still undergoing trials. The supportive management includes oxygen maintenance, intravenous fluids, and symptomatic management. Other treatment modalities may include corticosteroids, anticoagulants, tocilizumab, a humanized monoclonal antibody against IL-6 receptor,
Effects of Vitamin D and Vitamin C in COVID-19 Patients

Yaqinuddin et al.

Natural Roles of Vitamins D and C in Humans

Vitamin D

Vitamin D is an essential fat-soluble vitamin that is obtained from the diet or through ultraviolet-mediated biosynthesis giving rise to its active form, 25-di-hydroxycholecalciferol (1,25(OH)2 D3) or vitamin D3 (calcitriol). Cholecalciferol (D3) is the primary source of vitamin D; ergocalciferol (D2) is another source. Vitamin D3 is an essential endocrine compound for calcium and phosphorus metabolism and homeostasis, involving the bone, gut, kidneys, and parathyroid glands. Vitamin D has been shown to improve immune response against bacteria, viruses, fungi, and parasites. Vitamin D3 binds to a vitamin D receptor (VDR), which interacts with the retinoic acid receptor (RXR) to form a heterodimer and activates the VDR response elements (VDRE). This D3/VDR/RXR/VDRE complex is responsible for regulating 900 genes. The vitamin D3-activating enzyme has been expressed in many other tissues such as bone, kidneys, intestine, pancreas, platelets, and prostate.

Vitamin C

Vitamin C is an important micronutrient and antioxidant involved in many redox reactions. Discovered in the 1920s by Nobel laureate Albert Szent-Györgyi from Hungary as an essential vitamin for scurvy prevention, vitamin C also has significant immunomodulatory, antimicrobial, antiparasitic, antiviral, and antioxidant properties. The natural sources of vitamin C or ascorbic acid are citrus fruits, mangos, strawberries, papayas, tomatoes, among others. Vitamin C is an essential water-soluble vitamin in human beings since they cannot synthesize it in their bodies due to a lack of L-glucono-γ-lactone oxidase. Human beings need a minimum of 10 mg daily dose of vitamin C to ward off scurvy, although the daily requirement from diet needs 100 to 200 mg of vitamin C per day for human beings. Vitamin C also has a partial role in metabolism including energy transformation, collagen biosynthesis and repair, adrenal steroid and catecholamine production, and iron absorption. Vitamin C is also an important cofactor in collagen synthesis, stabilizing the collagen tertiary structure by enabling reactions that require prolyl and lysyl hydroxylase.

Molecular Mechanism and Immunomodulating Effects of Vitamin D and Vitamin C

Vitamin D

Vitamin D3 is produced in the skin via ultraviolet B (UVB) radiation, leading to the formation of 7-dehydrocholesterol in the skin, which is followed by a thermal
reaction. The liver converts vitamin D$_3$ or oral vitamin D to 25(OH)D using 25-hydroxylase, and then to the hormonal metabolite 1,25(OH)$_2$D (calcitriol) in the kidneys or other organs through 1-α hydroxylase, as needed. The majority of vitamin D effects result from calcitriol entering the nuclear vitamin D receptor, which is a DNA-binding protein that interacts directly with regulatory sequences near target genes, resulting in recruitment of chromatin active complexes, participating epigenetically and genetically in altering the transcriptional output. The expression of the nuclear vitamin D receptors (VDR) in immune cells, such as macrophages, T cells, B cells, NK cells, and dendritic cells (DC), leads to histone acetylation and epigenetic transformation. In various studies, vitamin D was considered to reduce the risk of viral infections. One recent review about vitamin D’s role in reducing the risk of the common cold has grouped these mechanisms into three categories—physical barrier, natural cellular immunity, and adaptive immunity. Besides, vitamin D helps maintain tight, gap, and adherent junctions (e.g., via E-cadherin). It is proven by several studies that viruses increase infection by disrupting the junction integrity.

Vitamin D is implicated in the biosynthesis of antimicrobial peptides such as cathelicidin (LL-37) and β-defensins, activated B-cells and T-cells, and also promotes proliferation of T-regulatory (Treg) cells. Cathelicidins act as direct antimicrobial molecules against Gram-positive (GP) and Gram-negative bacteria (GN), enveloped and nonenveloped viruses, and fungi. Furthermore, these antimicrobial peptides disturb the cellular membrane of invading pathogens and can neutralize the biological activities of endotoxins resulting in their death. Other laboratory studies have shown more critical important functions on the antimicrobial peptides including LL-37 reducing influenza A virus replication in a mouse model, and 1,25(OH)$_2$D reducing the replication of rotavirus both in vitro and in vivo. The innate immune system generates both proinflammatory and anti-inflammatory cytokines in response to viral and bacterial infections, as observed in COVID-19 patients; and vitamin D has proven to boost the immune system. Administering vitamin D reduces the expression of proinflammatory Th1 cytokines, such as TNF-α, IL-2, and interferon γ (IFN-γ), and increases the expression of anti-inflammatory cytokines by macrophages, thus, signifying its immunomodulatory roles in adaptive immunity. Also, 1,25(OH)$_2$D$_3$ promotes T helper type 2 (Th2) cells to produce cytokines that helps to enhance the indirect Th1 cells suppression along with actions mediated by a multitude of cell types. Additionally, it promotes T regulatory cell induction, thus inhibiting inflammatory processes. Therefore, vitamin D immunomodulation includes attenuation of the Th1 cells and activation of the Th2 response. It induces synthesis and secretion of anti-inflammatory cytokines such as IL-4 and IL-10 and inhibits proinflammatory cytokines (IL-1, TNF-α, IFN-γ).

Vitamin C

Vitamin C reduces the risk of infections as it has antimicrobial properties and immunomodulatory functions, especially in high concentrations. Vitamin C can inhibit the activation of nuclear factor kappa-B (NFκB), a primary proinflammatory transcription factor with a crucial role in overall immunity, including cytokines genetic regulations, chemokines, inflammatory mediators, adhesion molecules, and apoptosis inhibitors. Additionally, vitamin C can also inhibit the production of TNF-α and IL-6, where the effects appear to be dose dependent. Moreover, vitamin C is proven to reduce the GM-CSF signaling responses, which regulate cytokines redox-signal transduction in host defense cells along with a possible role in controlling inflammatory responses. Furthermore, some studies have shown that high doses of vitamin C have a role in regulating the proliferation and function of T cells, B cells, and natural killer (NK) cells thus, vitamin C helps in inhibiting the progression of cytokine storms and improves the host’s immunity. Moreover, vitamin C can inhibit oxidative stress, which is an essential part of the innate immune response to viral respiratory infection (e.g., in COVID-19 as oxidative stress may play a role in its mechanism). Additionally, vitamin C can repair oxidative damage in bronchial epithelium by modulating reactive oxygen species (ROS) generation and expression, therefore preventing ROS-induced lung damage. Vitamin C has a role in the epigenetic and transcriptional enhancement of protein channels that regulate alveolar fluid clearance, leading to enhancement of lung epithelial barrier function, improving ARDS symptoms and respiratory function. Some in vitro studies established the vitamin C antiviral effects by inhibiting replication of herpes simplex virus 1, poliovirus type 1, and influenza A virus. Vitamin C has been reported as an alternative agent against sepsis; therein, it was revealed in some studies that high doses of vitamin C might reduce sepsis-related inflammation and vascular injury. Vitamin C supplementation has confirmed beneficial effects against different types of viral infections; furthermore, studies have established that patients with a viral infection, sepsis, sepsis-related ARDS had reduced ascorbate levels. Vitamin C has shown improved survival in lethal infections of different murine models. A study demonstrated the treatment of Venezuelan encephalitis virus infection in mice with vitamin C (50 mg/kg) exhibited reductions in viral titers, products of lipid peroxidation, and NO content. Additionally, mice incapable of vitamin C synthesis (L-gulono-gamma-lactone oxidase nulls) were infected with influenza; not receiving vitamin C supplementation exhibited more outstanding lung pathology scores despite the same viral titers. Vitamin C was found to reduce capillary-alveolar damage and mortality dose-dependently (100% versus 80% versus 50% at 0, 125, and 250 mg/kg/day) in restraint-stressed mice with H1N1 viral-induced pneumonia.

The immunomodulating effects of vitamins C and D can be summarized in Table 1.

Immunomodulating Effects of Vitamins D and C in Disease and COVID-19

Vitamin D has been associated with various autoimmune diseases, cancers, and pregnancy outcomes. Vitamin D has led
The role of vitamin D in autoimmune diseases has been contentious, however. A positive correlation was seen between inflammatory bowel disease (IBD) and vitamin D deficiency, but no such association was noted with Crohn's disease. Vitamin D was associated with increased cytokines such as IL-10, IL-4, and IL-6 in IBD, showing decreased IFN-γ compared with control. Multiple sclerosis (MS) has shown to have increased VDRs and 1-α hydroxylase, suggesting the utilization of the anti-inflammatory effects of vitamin D, namely the upregulation of Tregs and decreased cytokine secretion by CD4+ T cells. On the other hand, VDR polymorphisms have been associated with increased risk of RA, especially the FokI and TaqI polymorphisms, suggesting that vitamin D may be positively associated with RA disease.4

The discrepancies in certain autoimmune studies may be due to the mode of treatment given, whether the studies were done on animals or humans, underlying diseases, genetic and lifestyle factors, and the different doses of vitamin D used in the study.

The immunomodulating effects of vitamin C can be attributed to its antioxidant properties—it can donate electrons and itself get oxidized, thus taking part in a redox reaction. Vitamin C is needed in minimum concentration to maintain the cellular and humoral immune response; in higher concentrations, it also exerts lymphoproliferative effects, induces natural killer cells activity, and chemotactic effects. Vitamin C has an important antioxidant function in the gut barrier function and antioxidation, as studies record reduced vitamin C concentrations in IBD. Recurrent infections in Chediak–Higashi syndrome or chronic granulomatous disease (CGD) have shown improved chemotaxis with vitamin C administration, considered in part due to its microtubule stabilization effect. Although vitamin C did not cure the underlying etiology in both diseases, it enhanced immune function and improved the prognosis.1,8,55

Vitamin C has also been shown to inhibit Pseudomonas aeruginosa growth in vitro and Staphylococcus aureus growth and even slightly inhibiting biofilm production in methicillin-resistant Staphylococcus aureus. However, in some cases such as pH-neutral mediums, Staphylococcus aureus was not inhibited; in similar conditions in another study, group A hemolytic streptococci growth was inhibited.

Vitamin C weakly inhibited Escherichia coli ATCC 11775 growth but had substantive antiproliferative effects on Escherichia coli O157:H7; 10–20 mg of vitamin C in microaerobic conditions could inhibit Helicobacter pylori infection in vitro but promoted its growth in aerobic conditions. This signifies the importance of concentration, bacterial strain, and environmental conditions for vitamin C inhibitory effects.7

In its oxidized and active form L-dehydroascorbic acid (DHA), vitamin C also exerts its antiviral effects by inhibiting replication of herpes simplex virus type 1 (HSV 1), rabies virus, influenza virus type A, and poliovirus type A. DHA was shown to have a stronger antiviral activity with the addition of Fe3+ to the culture medium growing HSV1 than DHA alone, due to the formation of hydroxyl free radicals induced by Fe3+.45

Table 1 The immunomodulating effects of vitamins C and D

<table>
<thead>
<tr>
<th>Vitamin D</th>
<th>Vitamin C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobial effects through cathelicidin and β2 defensins</td>
<td>Antioxidant, antimicrobial, antiviral, and antiparasitic effects</td>
</tr>
<tr>
<td>Upregulation of Th2 response and downregulation of Th1 response</td>
<td>Antiapoptosis of monocytes and apoptosis of neutrophils</td>
</tr>
<tr>
<td>Induces anti-inflammatory cytokines release and decreases proinflammatory cytokines</td>
<td>Synthesis of other antioxidants such as glutathione and tocopherol (vitamin E)</td>
</tr>
<tr>
<td>T cell proliferation and differentiation, especially Treg over cytotoxic T cells</td>
<td>Increased immunoglobulin secretion</td>
</tr>
<tr>
<td>Maintaining immune tolerance by APCs</td>
<td>T cell proliferation and activation</td>
</tr>
<tr>
<td>Activation of TLRs</td>
<td>Chemotaxis of neutrophils, macrophages</td>
</tr>
<tr>
<td>NK growth, activation and release of IL-4 and IFN-γ by NK cells</td>
<td>Enhanced phagocytosis and inhibition of necrosis</td>
</tr>
<tr>
<td>Antiphagocytic activity and IL-1β and IL-8 release by PMNs and macrophages</td>
<td>Epigenetic immunomodulation</td>
</tr>
<tr>
<td>Decreased B cell proliferation and immunoglobulin production</td>
<td></td>
</tr>
<tr>
<td>Epigenetic immunomodulation</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: APC, antigen-presenting cells; IFN, interferon; IL, interleukin; NK, natural killer; PMNs, polymorphonuclear cells; Th, T helper; TLR, toll-like receptors; Treg, T regulatory.
Studies have shown that high levels of vitamin D can reduce bleomycin-induced pulmonary fibrosis in mouse studies by decreasing IL-1β produced by pulmonary fibroblasts. Many studies have also shown that higher vitamin D levels were associated with better prognosis in acute respiratory tract infections (ARTI) via decreasing proinflammatory cytokine release from macrophages and T lymphocytes. On the other end, vitamin D deficiency is associated with an increased likelihood of developing ARTIs.56

A recent meta-analysis confirmed vitamin C effects on patients with severe sepsis and ARDS, resulting in reduced mechanical ventilation and length of ICU.5 In concordance to this finding, it was recently confirmed in a randomized clinical trial involving 167 patients with sepsis and ARDS that showed significant improvement in 28-day mortality and shortening of ICU length of stay following high-dose intravenous vitamin C up to 15 g per day.49 It is noteworthy that a growing number of case reports support the use of high doses of vitamin C in the treatment against COVID-19.

Conclusion

With the evidence presented on the role of vitamins C and D in autoimmune, infectious, immunodeficiency syndromes and malignancies, it is safe to conclude that these vitamins do in fact have various immunomodulating effects that can change the course of a disease, altering its severity, progression, and even mortality in some cases. We propose for clinical trials to test the benefits, disadvantages, mechanism of action of the use of vitamins C and D medically in COVID-19 patients and whether such changes are clinically significant.

Conflict of Interest

None declared.

References

5 Myszka M, Klinger M. The immunomodulatory role of Vitamin D. Postepy Hig Med Dosw 2014;68:865–878
7 Moussavi S, Bereswill S, Heimesaat MM. Immuno-modulatory and antimicrobial effects of vitamin C. Eur J Microbiol Immunol (Bp) 2019;9(3):73–79
9 Hemiliä H, Chalker E. Vitamin C. Vitamin C can shorten the length of stay in the ICU: a meta-analysis. Nutrients 2019;11(4):E708
10 Johnston CS, Beezhold BL, Mostow B, Swan PD. Plasma vitamin C is inversely related to body mass index and waist circumference but not to plasma adiponectin in nonsmoking adults. J Nutr 2007;137(7):1757–1762
11 Johnston CS, Corte C, Swan PD. Marginal vitamin C status is associated with reduced fat oxidation during submaximal exercise in young adults. Nutr Metab (Lond) 2006;3:35
12 Kivirikko KI, Myllylä R, Pihlajaniemi T. Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. FASEB J 1989;3(5):1609–1617
13 Ströhle A, Wolters M, Hahn A. Micronutrients at the interface between inflammation and infection–ascorbic acid and calcirol: part I, general overview with a focus on ascorbic acid. Inflamm Allergy Drug Targets 2011;10(1):54–63
17 Rondanelli M, Micciano A, Lamborghini S, et al. Self-care for common colds: the pivotal role of vitamin D, vitamin C, zinc, and Echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds-practical advice on dosages and on the time to take these nutrients/herbs in order to prevent or treat common colds. Evid Based Complement Alternat Med 2018;2018:5813095
31 Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 2015;7(4):3011–3021
38 Maeng HG, Lim H, Jeong YJ, et al. Vitamin C enters mouse T cells as dehydroascorbic acid in vitro and does not recapitulate in vivo vitamin C effects. Immunobiology 2009;214(4):311–320
46 Brant EB, Angus DC. Is high-dose vitamin C beneficial for patients with sepsis? JAMA 2019;322(13):1257–1258
47 Marik PE, Hooper MH. Doctor-your septic patients have scurvy! Crit Care 2018;22(1):23
50 Valero N, Mosquera J, Alcocer S, Bonilla E, Salazar J, Álvarez-Mon M. Melatonin, minocycline and ascorbic acid reduce oxidative stress and viral titers and increase survival rate in experimental Venezuelan equine encephalitis. Brain Res 2015;1622:368–376
55 Buffinton GD, Doe WF. Altered ascorbic acid status in the mucosa from inflammatory bowel disease patients. Free Radic Res 1995;22(2):131–143