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Background and Significance

The topic of machine learning (ML) has become increasingly
prominent in clinical medicine. A search of PubMed using the
Medical Subject Headings (MeSH) term “Machine Learning”
returns 49 results for the year 2010, but over 7,000 results in

2019—over a hundred-fold increase. Physicians in fields such as
Radiology, Neurology, Pathology, Gastroenterology, Cardiology,
and others all see ML as the next enabler of innovation and
advancement intheir respectivefieldsandspecialty journals.1–4

Despite the growing importance of ML in medicine, clinicians
have historically received little training to systematically and
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Abstract Background Machine learning (ML) has captured the attention ofmany clinicians who
may not have formal training in this area but are otherwise increasingly exposed to ML
literature that may be relevant to their clinical specialties. ML papers that follow an
outcomes-based research format can be assessed using clinical research appraisal
frameworks such as PICO (Population, Intervention, Comparison, Outcome). However,
the PICO frameworks strain when applied to ML papers that create new ML models,
which are akin to diagnostic tests. There is a need for a new framework to help assess
such papers.
Objective We propose a new framework to help clinicians systematically read and
evaluate medical ML papers whose aim is to create a new ML model: ML-PICO (Machine
Learning, Population, Identification, Crosscheck, Outcomes). We describe how the ML-
PICO framework can be applied toward appraising literature describing ML models for
health care.
Conclusion The relevance of ML to practitioners of clinical medicine is steadily
increasing with a growing body of literature. Therefore, it is increasingly important
for clinicians to be familiar with how to assess and best utilize these tools. In this paper
we have described a practical framework on how to read ML papers that create a new
ML model (or diagnostic test): ML-PICO. We hope that this can be used by clinicians to
better evaluate the quality and utility of ML papers.
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thoughtfully evaluate ML research papers.5,6 Although there
are publications that try to address this need,7,8 they tend to
bewritten fromabird’s eyeview, ormore technical perspective,
andasa resultmightbedifficult for physicianswithout priorML
training to apply in practice.

This paper provides a simple and practical framework for
clinicians to systematically read and evaluate medical ML
papers whose aim is to create a new ML model: ML-PICO
(Machine Learning, Population, Identification, Crosscheck,
Outcomes). We hope that this will empower clinicians to
more rigorously assess vendors, startups, and researchers
who approach health systems with, at times, exaggerated
promises from their ML based solutions.9 This framework is
inspired by the PICO (Population, Intervention, Comparison,
Outcome) framework, which is a methodology to help formu-
late research questions that can also be used to digest a
research paper to its core components.10 As the formal PICO
framework strains when applied to diagnostic tests and ML
papers,11,12 we have created ML-PICO to fill this void. As we
discuss and demonstrate this new framework, will refer to a
usecaseof usingML techniques tomodel sepsis inhospitalized
patients as a guide.

Machine Learning—ML
When thinking about how to read medical ML papers, it can
be helpful to imagine two separate approaches we see
regularly in clinical research. The first is the study of a new
diagnostic test, and the evaluation of its value when com-
pared with an established gold standard (e.g., Wells’ criteria
for deep venous thrombosis, Ranson’s criteria for pancreati-
tis). The second approach is outcomes-based research,where
cohort(s) of subjects are, or have been, exposed to various
treatments and controls, and are studied to better under-
stand clinical outcomes.13 Many papers that clinicians read
follow the format of outcome-based research, so there might
be a tendency to assume that the same is true for ML papers.
However, the reality is that many ML papers are effectively
creating new “diagnostic tests” in the form of an ML model
and rarely go as far as showing that these new tests can
improve clinical outcomes.14,15

When reading a medical ML paper, it is important to
identify which of the two approaches is being presented. ML
papers that describe outcome-based research (e.g., testing
the impact of implementing an ML model on patient out-
comes) aremore ideal, and offer stronger evidence of clinical
utility. These are the types ofmedical ML papers that readers
should focus on looking for and drawing conclusions from.
For such papers, applying the traditional PICO framework to
assess their quality works well. Unfortunately, only a minor-
ity of ML papers do so,16,17 and even fewer are able to show
improved outcomes prospectively.

In contrast, ML papers that use retrospective data to
create ML models (new diagnostic tests) have value but do
not in isolation tell us if theMLmodels have clinical utility.18

Despite a lack of clear utility, such papers tend to grab
attentionwith news headlines often in the form of: Artificial
Intelligence better than physicians at diagnosing X, Y, or
Z.14,19 To know if those claims can be justified requires, as

with any new clinical test/drug, external validation. Simple
validation can be testing the model on a different retrospec-
tively collected dataset.16 More ideally though, the model
should be tested prospectively in an interventional trial
format to see if it can truly improve clinical outcomes.20

For ML papers that aim to create a new diagnostic test in the
form of an ML model, the traditional PICO framework does
not fit or perform well to assess their quality. Instead, we
propose using ML-PICO.

Population—P
When evaluating clinical research, it is important to know
the characteristics of the population studied. Often summa-
rized in “Table 1,” these include variables such as age, gender,
race, relevant comorbidities, and more.21 This information is
important because it helps clinicians make decisions on
whether or not the results of the study are applicable to
the patient sitting in front of them.

Similarly, MLmodels are created from a population of data,
whichmeans that it is important to know thecharacteristics of
that data, andwhether or not amodel built on that datamight
be applicable to different settings18 (i.e., Table 1 for the data).
Referring to our case example, numerous models to predict
sepsis have been created using the Medical Information
Mart for Intensive Care (MIMIC) dataset,22–25 which is an
open, de-identified clinical dataset from the intensive care
unit (ICU) at the Beth Israel Deaconess Medical Center in
Boston, Massachusetts, United States.25 Patients in the ICU
are not only sicker than thosewho are in non-ICU settings, but
also experience different treatments (e.g., vasopressors,
sedation, intubation), and generate different frequencies of
data (e.g., many sets of vital signs and laboratory measure-
ments per day vs. a few per day). For these reasons, an ML
model created using the MIMIC dataset might not generalize
well to different clinical settings such as the general medicine
wards, or to a nonacademic hospital setting. This is referred to
as dataset shift,26 in which a model fails to generalize due to
differences between the dataused to create themodel, and the
data seen during deployment. This can lead to significantly
decreased model performance when the model is applied to
new settings.18,26

Another important question to consider about the data is
its quality. While quality can be subjective, there are some
generally agreed upon measures of data quality, which
include: (1) data inaccuracy, (2) data missingness, and (3)
selective measurements.

Data inaccuracy would seem to be straightforward, being
either accurate or inaccurate. However, there is a less intuitive
cause of data inaccuracy, which is the variable completeness
and standardization of data from the electronic health record
(EHR).9,27 For example, one hospital may have a workflow to
ensure that a patient’s problem list is up to date at all times,
while another might not use the problem list much at all. One
hospital might flag patients with sepsis using the systemic
inflammatory response syndrome criteria, while another
might use the sepsis-3 criteria. There are significant efforts
underway to standardizedatadefinitions (e.g., FastHealthcare
Interoperability Resources), but these standards still depend
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on accurate data mapping, which is not always a straightfor-
ward process.

Next is datamissingness. From the perspective of computer
science, all health care data has some degree ofmissingness.28

For example, vital signs are generally obtained every 4 to
8hours, meaning that if a predictive model looked for values
every hour, the majority of 1-hour intervals will have no
values. There are methods to handle this type of missing
data, called imputation.29 However, an easy to overlook type
of missing data is the data that exists and should be included,
but is not.9 If incomplete data are used to create anMLmodel,
the model could perform poorly as a result.30 For example, a
patient might see multiple physicians in multiple health
systems, and important information might not be available
because his or her data at another health system cannot be
accessed.31

The lastmeasure of data quality is selectivemeasurement.9

A good performing model should be built on data that is as
complete and as relevant to a specific question as possible. For
each patient encounter, a patient might have numerous types
of data generated including insurance claims, EHR structured
data, images, notes, etc.32Despite a plethora of data sources, it
is not uncommon to seemodels built using only one source of
data, such as claims data. When reading an ML paper, it is
important to appreciate whether the clinical question the ML
model is built to answer can be answered with the type(s) of
data being used.33

Identification—I
In medicine, the majority of ML models (including deep
learning ones) are of the supervised learning variety,34 in
which “gold standard” labels are required to be identified for

the data being used.7 For example, an ML model to identify
cases of sepsis from EHR data would require structured data
elements from the EHR, as well as clear labels for which
patients in the dataset had sepsis, and when. Once the data
and labels for the data are obtained, the ML model is able to
mathematically find patterns and relationships in the data
that best correlate with the labeled outcome that was
provided. This process is how an ML model is “trained.”
Afterward, it can be fed new data to get its prediction(s).
Its predictions can then be compared with the actual out-
come to determine its effectiveness. Different ML algorithms
use different mathematical and statistical methods to do so,
but generally work using similar concepts8,35 (►Fig. 1).

Previously, the importance of the quality of data was
emphasized, so it should not be surprising that how the data
are labeled is just as important.34 Going back to our sepsis
example, howshould cases of sepsis fromEHRdata be labeled?
Should the sepsis-2 or sepsis-3 definition be used? Interna-
tional Classification of Diseases, Tenth Revision, (ICD-10)
diagnosis codes could be used to identify positive cases of
sepsis,22,36,37 but diagnosis codes are generally unreliable,38

with the sensitivity of explicit sepsis codes only between 30
and 50%.39,40 A better gold standard for sepsis than ICD-10
diagnosis codes might make the generated model more
relevant.

One could thus decide not to use ICD-10 diagnosis codes
and instead use “clinical criteria.” However, if there were a
hundred thousand encounters in the dataset, it might be
infeasible to manually review all these charts and assign
individual labels. In addition, what level of experience is
needed for someone to be qualified to assign labels? Should it
be experts in the field, experienced attendings, or fellows in

Fig. 1 Data and labels for that data are used to train the MLmodel. New cases can then be input into themodel tomake predictions. ML, machine
learning.
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training? In reality, it is not uncommon to see medical
students or residents defining these sources of truth.41

It is important to acknowledge that there is often not a
perfect definition for many clinical conditions (e.g., cancer).34

There will always be some uncertainty regarding accurate
clinical labels. Still, these decisions are clinical ones and should
be scrutinized by experienced clinicians. The key takeaway is
that how a “gold standard” label is identified is important
when training a supervised ML model, and this information
should be transparent so that readers can best determine if the
model is reliable and applicable to their clinical needs.3

Lastly, it is also important to pay attention to the clinical
use case to which the ML model is being applied. ML models
are powerful enough to make accurate predictions on any
dataset that you have good data and labels for. Unfortunately,
suchmodelsmight end up providing onlyminiscule benefit if
there is little ability to change the outcome even given an
accurate prediction (e.g., predicting 1 year mortality in
patients with terminal cancer).31,32

Crosscheck—C
The next step is to crosscheck the paper forMLmodeling best
practices. While good external validation of an ML model
would trump any forms of internal validation, there are still
best practices for internal validation to look for in ML papers
that areworthmentioning. One such best practice is to break
the original retrospective data into three separate datasets, a
training set, a development set, and a test set.42 The training
set is used to train theMLmodel. The development set is used
to optimize it. The test set is used to evaluate the true
performance of the model. Think of the test set as the best
available alternative to external validation. If the model’s
performance is significantly worse in the test set compared
with the training or validation sets, this suggests that the
model will not generalize well and is not worth pursuing
further.42 If the model’s performance is high in all datasets,
this gives us confidence that the model could generalize well
to other settings and is worth pursuing further external
validation.

When reading an ML paper that creates a new ML model,
it is important to know if the outcomes that are described in
the paper are from the training set, development set, or test
set. The outcomeswith themost value are those from the test
set.42 If there is no clarification on which dataset an ML
model’s performance came from, or if there was no dataset
splitting at all, it raises a red flag about the methodology of
the paper. It is important to note that cross validation is
another acceptable method of internal validation. In this
approach, all available data are divided into a number (n) of
partitions. Amodel is built on (n�1) of these partitions, then
validated on the remaining partition that was not used to
train that model. This is repeated for all possible combina-
tions of (n�1) partitions and resultant validation sets. The
performance of each model from each partition of data are
then averaged together to determine the overall model and
model performance.43 As health care data and predictions
often include aspects of time (e.g., changes in practice trends
and disease prevalence over time), there is a theoretical

concern that cross validation could lead to more error
compared with using a test set from the most recent and
relevant time period. However, this concern has not been
confirmed to be a major issue in practice so far.44,45

Another best practice that is worth checking for is tempo-
rality.When training anMLmodel, it is vital to ensure that the
data used is consistent with the data that will be available
when theMLmodel is implemented. For example, claims data
and ICD codes can offer useful information about patient
outcomes, but might not be assigned until long after a patient
encounter with the health care system has been completed.32

Including claims data when training a real-time ML model to
predict sepsis onset during hospitalization might seem to
improve model accuracy during training, but when tested in
the real world would likely underperform. This is because the
claims data are providing extra information that will not be
presentwhen themodel is implemented in the realworld. This
is referred to as data leakage.46

Outcomes—O
In clinical trials, physicians are taught to look at primary
and secondary outcomes.47 However, ML papers that create
new ML models from retrospective data often use outcome
metrics that are different and less familiar to physicians.

There are numerous different outcomemetrics that can be
seen in ML papers, and a list of common one can be seen
in►Table 1.48–51An important distinction tomake iswhether
or not the metric is a classification or regression metric.
Classificationmetricsmeasurehowwell amodeldiscriminates
between different classes (e.g., sepsis present vs. not present).
Common classification metrics include the receiver operating
characteristic (ROC) andprecision–recall (PR) curves, aswell as
the area under the curve (AUC) for both respective graphs
(►Fig. 2a, b).49Regressionmetricsmeasurehowgood amodel
is at calibration, meaning how close to the true value the
model’s predictions are (e.g., predicted length of stay).51 We
will mainly focus on the classification metrics mentioned
above here, but it is important to note that many other valid
metrics can be seen in ML papers other than AUC or ROC.

The AUC is a common metric seen in ML papers. To under-
stand it, one has to understand classification thresholds.52

Classification models output a probability. For example, the
probability that a patient has sepsis could be 70, 63, or 15%. As
this is a classification problem inwhich themodel should only
output “yes” or “no” to having sepsis, the probability has to be
translated to “yes” or “no.” This can be done by selecting a
threshold. If a threshold of 50% is set for having sepsis, then the
first two cases above would be classified as “yes,” and the last
one “no.” If a threshold of 80% is set instead, then all the cases
would be classified as “no.”

To generate the ROC curve, one calculates and plots the
model’s performance in terms of the confusion matrix
(►Fig. 2c) for every possible threshold between 0 and
100%, the result is the ROC curve (►Fig. 2a). The area under
this graph is the AUC (also called AUROC, or C statistic), and is
an aggregate measure of overall performance of the model
over all possible threshold values. AUC values are between 0
and 1, with higher values being better.52 A PR curve works
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similarly to an ROC curve, except that the y-axis is precision
(or positive predictive value), and the x-axis is recall (or
sensitivity) (►Fig. 2b).

It is natural to want to use higher AUC values as an
indicator for better ML models and papers. However, this
single number interpretation can be very misleading,53 and
there are some additional considerations that can help
evaluate an ML paper more holistically. The first is to deter-
mine if the AUC is from aROC curve, or a PR curve. The second
is to have an estimate of the prevalence of the condition
being evaluated. ROC curvesmeasure the performance of the
model independent of the prevalence of the condition,
whereas PR curves are affected by prevalence.54 This means

that as the prevalence of a condition goes under 10%, and
especially if it falls under 5%, the AUC from the PR curve will
start to become significantly lower compared with the AUC
from the ROC curve.55 As most conditions in medicine have
low prevalence (i.e., under 10%),56–58 it is worth making the
argument that the PR curve, and its AUC, might be a more
honest and clinically relevantmetric to look at than that from
the ROC curve.59,60 When comparing the AUCs from ML
papers to each other, it is important to ensure that one is
comparing apples to apples, rather than apples to oranges.

Furthermore, when evaluating an ML model, clinicians
should also consider what constitutes an acceptable perfor-
mance level, or clinical utility, for that model.53,61 In clinical

Table 1 Regression and classification ML outcome metrics

Outcome metric Description Pros/Cons

Regression

Root mean squared
error (RMSE)

The square root of the sum of the differ-
ences between the prediction values and
observed values squared, and divided by
the number of samples n.

Generally, the standard regression metric used as
easy to do certain mathematical operations.
Penalizes predictions that are significantly differ-
ent from observed values more than MAE as values
are squared. Values can range from 0 to infinity.

Mean absolute
error (MAE)

The sum of the absolute differences be-
tween the predicted values and observed
values, divided by the number of samples
n.

Penalizes predictions that are significantly differ-
ent from observed values less than RMSE, so less
affected by outliers. Values can range from 0 to
infinity.

R2 Is equal to 1 minus the ratio of the sum of
differences between the prediction values
and observed values squared, and the sum
of the differences between the average
observed value and observed values
squared.

Is a measure to compare how well the model per-
forms relative to predicting the average observed
value. An R2 value of 0 suggests similar performance
to predicting the average. An R2 value below 0
suggests worse performance than predicting the
average. An R2 above 0 suggests better performance.

Classification

Sensitivity (Recall)
TP/(TPþ FN)

Proportion of patients with the condition
who test positive.

Measures test performance without accounting for
prevalence of the condition in the population. In
conditions with low prevalence, positive predictive
value can be low despite high sensitivity.

Positive predictive
value (Precision)
TP/(TPþ FP)

Proportion of patients who test positive
who are positive for the condition.

In conditions with high prevalence, sensitivity of
the test can be low despite high positive predictive
values.

F1 score
F1¼ 2� Precision� Recall/
(Precisionþ Recall)

F1 Score is the harmonic mean between
precision and recall, meaning that it is trying
to balance the importance of both metrics.

In cases in which precision and recall are both impor-
tant, F1 score can be used to incorporate the impor-
tance of both measures into one. F1 score mainly
penalizes lower values for either precision or recall.

Accuracy
(TPþ TN)/(Nþ P)

Simplest metric to use that looks broadly
at correct predictions over all predictions.

Not a good measure when there is a class imbal-
ance. For example, if the prevalence of a condition
is only 1%, just guessing the absence of the con-
dition will lead to 99% accuracy.

Abbreviations: FN, number of false negatives; FP, number of false positives; ML, machine learning; N, number of actual negatives; P, number of actual
positives; TN, number of true negatives; TP, number of true positives.
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medicine, it is frowned upon to order tests that have poor
utility, and so the same expectations should exist for ML
models. When an ML model is being considered for imple-
mentation, there should be expectations on what minimal
sensitivity and positive predictive value (PPV) thresholds are
clinically acceptable. These thresholds are easy to draw on the
PR curve (►Fig. 2d) and help visually identify if the model
meets minimal requirements (area of utility). Assuming a
disease prevalence is known or able to be estimated, the
area of utility can also be drawn out on the ROC curve based
on minimal thresholds for sensitivity and PPV (►Fig. 2e).62

More details on this can be found in ►Appendix A.

If the ML model is not able to meet the minimal
sensitivity and PPV thresholds required to be clinically
useful, then it may not be worth implementing. Sensitivity
and PPV are emphasized above as they are familiar metrics
for clinicians. However, recent work has introduced more
advanced ideas for measuring the clinical utility of an ML
model by including both the effectiveness of the model at
making predictions as well as the effectiveness of the
downstream intervention(s). This metric is called number
needed to benefit and is the product of the number needed
to screen (NNS) and the number needed to treat (NNT). The
NNS is equal to the reciprocal of the PPV and is purely a

Fig. 2 (a) Area under the curve for the ROC curve. (b) Area under the curve for the PR curve. (c) Example of the confusion matrix. (d) Area of
utility for ROC curve. (e) Area of utility for PR curve. PR, precision–recall; ROC, receiver operating characteristic.
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result of the performance of the model. The NNT, on the
other hand, is a result of the effectiveness of expected
intervention which results from a positive alert.48 This
allows clinicians to weigh the benefit of an ML model and
its implementation more rigorously, and whether or not it
can truly address their needs.

Conclusion

As the importance of ML to clinical medicine increases in the
future, the number of paperswritten in this areawill continue
to grow. It would be increasingly important for clinicians to
be familiar with such publications and how to properly assess
and utilize them in their practice. In this paper we have
described a practical framework on how to read ML papers
that create a newMLmodel (or diagnostic test): ML-PICO. We

hope that this can be used by clinicians to better evaluate the
quality and utility of ML papers. A summary of our key points
organized by ML-PICO can be found in ►Table 2.

Limitations

The main limitation to this paper is that the ML-PICO
framework still needs formal validation.

Clinical Relevance Statement

The ML-PICO (Machine Learning, Population, Identification,
Crosscheck, Outcomes) framework can be adapted to help
clinicians systematically read ML papers, so that they can
better evaluate the quality and utility of ML papers for their
clinical practice and use case.

Table 2 Summary of important questions to consider when reading clinical ML papers, organized by ML-PICO

Description Important questions to ask when reading clinical ML papers

M
L

Machine learning:
Type of ML paper

• Is the ML paper focused on creating a new ML model (diagnostic test), or does it follow
an outcomes-based research format?
� If following outcomes-based research format, the traditional PICO framework can be
used to appraise the paper.

� If creating a new ML model, proceed with using the ML-PICO framework.

P Population:
Characteristics of the
population of data used to
create the ML model

• Do the characteristics of the original model’s data match that of the setting where the
model is anticipated to be implemented into (i.e., similar Table 1)?
� Is there risk for database shift as a result?

• What is the quality of the data used to create the model?
� How accurate is it, and how do you know?
� Is there missing data? If so, is that acceptable or would it introduce significant bias?
� Can the clinical question being addressed be answered with the type(s) of data
sources being used?

I Identification:
How gold standard labels
are identified from the data?

• Is the use case that this ML model will be applied to clinically relevant?
� Can outcomes be improved by the presence of this new prediction?
� Can this ML model be implemented seamlessly into workflow?

• How is the clinical concept defined in the data (i.e., how are gold standard labels
identified from the data)?
� If via ICD-10 codes, do they appropriately capture the target condition?
� If via “clinical criteria,” is it consistent with established clinical definitions?
� Who is responsible for giving the final label and is his or her expertise appropriate?

C Crosscheck:
Checking for ML
best practices

• If the paper is creating a new ML model, did the authors describe how they divided the
data into training, development, and test sets? Or did they use cross validation?
� What dataset did the outcomes described in the paper come from?

• Is the data used to train the ML model reflective of the actual data that the model will
have access to when implemented in the real world?

• Are there signs of database leakage?

O Outcome:
What are the outcomes that
are emphasized in the paper?

• What ML outcomes are being emphasized in the paper?
� If AUC is the main outcome, is it from the ROC curve or the PR curve?
� Is the medical condition being targeted common or rare (i.e., under 10% prevalence).
� Based on the prevalence, is the PR curve or ROC curve and its respective AUC more
appropriate?

• For the use case that this MLmodel is being applied to, what are theminimally accepted
sensitivity and PPV that would make this model clinically useful?
� Does the model meet these thresholds (i.e., intersect the area of utility on ROC or PR
curve)?

• What is the number needed to benefit from the ML model and its workflow
implementation?
� Is this worth pursuing?

Abbreviations: ICD, International Classification of Diseases, Tenth Revision; ML, machine learning; PICO, Population, Identification, Crosscheck,
Outcomes; PR, precision–recall; ROC, receiver operating characteristic.
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Multiple Choice Questions

1. Machine learnings papers that focus on the creation of a
new ML model from retrospective data provide a level of
evidence similar to which of the following?
a. Randomized control trials
b. Prospective cohort study
c. Retrospective diagnostic test creation
d. Meta-Review

Correct Answer: The correct answer is option c. Most
machine learning papers are only creating new diagnostic
test(s) (e.g., Wells Criteria) based on retrospective data,
and are not prospectively validated.

2. When a machine learning algorithm is created for a
clinical condition with a natural low prevalence rate
(e.g., <10%), which of the following are important out-
come metrics to pay attention to?
a. Sensitivity
b. Positive predictive value
c. Area under the precision-recall curve (AUPR)
d. All of the above

Correct Answer: The correct answer is option d. There is
not one metric that is always more important than the
other ones. This depends on the use case as well as
the goals of algorithm. However, when the prevalence of
the condition, that the machine learning algorithm is
designed to address, is naturally low, metrics like posi-
tive predictive value and AUPR become more relevant as
they highlight the benefit versus cost of high false alarm
rates.
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Appendix A

Finding the positive predictive value (PPV) threshold to the area of utility on the receiver operating characteristic (ROC) curve
Assuming it is possible to provide a reasonable estimate of the prevalence of clinical condition that the machine learning

(ML) model is built to address, the minimum PPV threshold border can be drawn on the ROC curve by the equation:
“Equation 1”

The area of utility (►Fig. 2D) can then be defined as the area bordered by the above equation, the minimum sensitivity
threshold, and the ROC curve itself.

An html program that can help visualize the area of utility on both the ROC and PR curves based on minimum sensitivity,
PPV thresholds, and estimated prevalence was also developed, and available for sharing by request. Please email xinran.
liu@ucsf.edu.
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