Facial Soft Tissue Injuries in Pediatric Patients

Sam Schild, MD¹,² Tatiana Reis Puntarelli, MD³ Margarita delaPena, MD³ Adam Johnson, MD, PhD⁴ Sydney C. Butts, MD, FACS¹,²,⁵

¹Department of Otolaryngology, SUNY Downstate Health Sciences University, Brooklyn, New York
²Department of Otolaryngology, Kings County Hospital Center, Brooklyn, New York
³Department of Anesthesiology, SUNY Downstate Health Sciences University, Brooklyn, New York
⁴Department of Otolaryngology, University of Arkansas Medical School, Arkansas Children’s Hospital, Little Rock, Arkansas
⁵Division of Facial Plastic and Reconstructive Surgery; Department of Otolaryngology, SUNY Downstate Health Sciences University, Brooklyn, New York

Abstract

Soft tissue injuries of the head and neck are a common reason for medical evaluation and treatment in pediatric populations with some unique and important considerations when compared with adults. The incidence and type of injuries continue to evolve with the adoption of new safety measures, technology advancements, and education of the general population. The goal of this article is to provide the reader with a thorough understanding of the evaluation and management of pediatric soft tissue trauma including the initial workup, physical examination, appropriateness of antimicrobial therapy, and setting for surgical repair. Additionally, the pediatric anesthetic considerations for evaluation and repair in regard to local anesthesia, sedation, and general anesthesia are described in detail. There is a focus on dog bites, perinatal injuries, and child abuse as these entities are distinctive to a pediatric population and have particular management recommendations. Lastly, application of the reconstructive ladder as it applies to children is supported with specific case examples and figures. Although there are many parallels to the management of soft tissue injury in adults, we will highlight the special situations that occur in pediatric populations, which are imperative for the facial plastic and reconstructive surgeon to understand.

Keywords
► pediatric dog bites
► pediatric facial trauma
► postnatal facial injuries

Trauma is the leading cause of morbidity and mortality in the pediatric population (aged 0–18) worldwide with craniofacial trauma a major component.¹⁻⁴ Soft tissue injuries of the head and neck are a common reason for medical evaluation and treatment in pediatric populations.⁵ Prominence of the cranium in infants and young children increases the likelihood of injury to this region.³,⁶ However, facial fractures are less frequent compared with adults due to the elastic nature of the skeleton in the pediatric population and the relationship of the midface and mandibular skeleton to the skull base.¹,⁶,⁷ The incidence and type of injuries continue to evolve with the adoption of new safety measures, technology advancements, and education of the general population.⁴,⁸ A high priority must be placed on the prevention of pediatric facial trauma considering the accidental nature of many pediatric soft tissue injuries. Helmets, protective gear, car seats, and child-safety locks are among the many prevention measures available to decrease occurrences and severity of facial trauma.⁶,⁹,¹⁰

Mechanisms of Injury

Motor Vehicle Accidents and Sports

The etiology and mechanism of soft tissue injury include some unique considerations in the pediatric population. The
most common etiologies include motor vehicle accidents and falls.\(^1\) Accidents due to sporting activities vary based on age and region of the country and include injuries involving bicycles, scooters, all-terrain vehicles, and contact sports.\(^6,9,12–14\) A review of the National Electronic Injury Surveillance System, that includes 764,293 emergency department visits related to contact sports and facial injuries revealed that basketball-related injuries accounted for the majority of visits at 46.6%.\(^14\) The use of personal protective equipment in sports such as football or lacrosse may explain the lower incidence of facial injuries among participants in these sports.\(^14\)

Dog Bites

The shorter stature of toddlers, their curiosity, and their inability to defend themselves when approaching pets can explain their vulnerability to animal bite wounds involving the face.\(^15\) In the United States, dog bites represent the large majority of animal bites with \(\sim\)1 to 2 million attacks annually and up to 90% of animal bites presenting to emergency departments.\(^16,17\) Across multiple studies, the majority of pediatric patients presenting with dog bites were school-aged children (6–12 years), male, and presenting in June or July.\(^15,17,18\) Injuries in infants (birth to 1 year) and preschoolers (2–5 years) usually involve the face (53.5%), unlike older children who sustain extremity injuries.\(^15\) Dog owners have a role to play in the prevention of bite injuries by ensuring proper training and socialization of the pet.\(^5,19\)

Small children and babies should not be left alone with a dog and parents must exercise caution if their child is going to be in contact with a dog unfamiliar to them.\(^5\)

From a public health and medicolegal standpoint, understanding trends in dog bite injuries could potentially decrease the incidence and morbidity of attacks. The types of dogs most commonly implicated and the specific behavioral traits of dogs that bite people are variables that may identify breeds posing the greatest risk to the public.\(^20\) While studies have identified pit bull terriers, German shepherds, and rottweilers as common offenders, there are barriers to this type of data gathering through law enforcement and other legal channels.\(^15,18\) Legal hurdles make it difficult to prove and designate certain breeds as more dangerous due to the inability to establish the specific genetic makeup of breeds involved in bite injuries. Dog registries are uncommon and dog bite reporting is not required by state law in many regions of the United States.\(^15\) Legislation that would enact regulations for certain breeds of dogs has encountered resistance among some dog owners.\(^15\)

Perinatal Soft Tissue Injuries

A unique type of pediatric soft tissue trauma includes injuries occurring in the perinatal period due to birth trauma and other injuries occurring in the immediate postpartum period.\(^21,22\)

One high-risk group are children requiring additional medical care in the neonatal intensive care unit (NICU), who may also be premature, low birth weight, or both. These patients have thin facial soft tissues that are vulnerable to pressure injuries from medical equipment.\(^21\) We will review several cases of perinatal nasal injuries secondary to nasal continuous positive airway pressure (nCPAP) treatment and discuss the importance of training staff to implement primary prevention measures and recognize the signs of evolving injuries.

Child Abuse

Children, especially preadolescents, are at higher risk of abuse or neglect.\(^23\) Physicians involved in the evaluation and care of patients with soft tissue facial trauma must always be on high alert for a presentation suspicious for abuse. An estimated 25% of children are victims of some form of abuse or neglect during their life, with 1 in every 7 experiencing it in the past year.\(^23\)

Clinical screening on initial presentation represents secondary prevention and is essential to identifying these patients at the earliest possible stage. There are many abuse screening tools available including the Pediatric Brain Injury Research Network (PediBIRN); Predicting Abusive Head Trauma (PredAHT), Pittsburgh Infant Brain Injury Score (PIBIS), and the TEN-4-FACESp Bruising Clinical Decision Rule.\(^23\) Multiple bruising injuries, oral injuries, and burn injuries are considered a “positive” screen.\(^23\) The TEN-4-FACESp Bruising Clinical Decision Rule is a validated scale for identifying children at high-risk of physical abuse and is applied to children under 4 years of age. TEN refers to torso, ear, and neck and FACES refers to frenulum, angle of jaw, cheek, eyelid, subconjunctiva, or patterned bruising or any bruising on an infant 4 months of age or younger.

Other important details about the injuries to determine from history gathering include whether the bruising or petechia displays a geometric shape or recognizable pattern and if there is a clear, plausible story to account for the bruising. Reporting suspected child abuse to Child Protective Services is mandatory in all US states, Washington, D.C., and the US territories.\(^23\) The 7-year-old patient shown in – Fig. 1 presented for the evaluation of a cauliflower ear deformity following an auricular hematoma as a result of abuse. Once in a new, safe home environment, her family and the patient herself desired reconstruction. The extensive fibrosis of the conchal bowl caused narrowing of the proximal external auditory canal. The stigma of the deformity was a constant reminder of the abuse and was another important factor in deciding to move forward with reconstruction. Debulking of the fibrotic tissues was performed in a two-staged procedure, addressing the conchal bowl first (– Fig. 2) via an anterior approach. Two months later, fibrosis of the antihelix and scaphoid fossa was debulked utilizing an incision placed along the posterior aspect of the helical rim and elevating the skin flap anteriorly for exposure (– Fig. 2).\(^24,25\) This case shows how a patient of school age was able to actively participate in surgical decision-making and how the outcome had a positive psychological impact in a victim of abuse (– Fig. 3).

History and Physical Examination

Several factors make history gathering and performance of the physical examination more challenging than in an adult patient. In very young children, the history must be obtained from a caregiver or witness who should provide the time,
mechanism, and details of the injury. This process becomes more challenging in an unwitnessed event. Regardless of the mechanism, these situations tend to be traumatic and upsetting for families. In a trauma setting, there are potentially additional injuries and a thorough survey by the evaluating trauma team must be performed, ensuring that the airway, breathing, and circulation are stable. When an intracranial injury is present, neurosurgical evaluation is mandatory. Soft tissue injuries involving periorbital tissues or the globe itself require an ophthalmological evaluation. Though not the focus of this article, it is important to highlight the importance of computed tomography scan imaging in any patient that could possibly have a fracture of the craniomaxillofacial skeleton.

All soft tissue injuries should be managed in an organized fashion on initial presentation. Classification of the etiology, location, size, and depth of the wound is essential in surgical planning and patient counseling. This examination should include evaluation of sensation and motor function. Bleeding associated with the soft tissue injuries can be controlled in the emergency department (ED) safely by packing the wound. More significant blood loss should be controlled in the operating

Fig. 1 Cauliflower ear deformity in a 7-year-old patient after child abuse. Reproduced with permission from Butts et al.74

Fig. 2 Otoplasty of cauliflower ear deformity: (A) Stage 1: anterior approach to conchal bowl. (B) Stage 2, posterior approach to helical rim.

Fig. 3 Postoperative view after two-staged repair of cauliflower ear deformity.
room. Clamping vessels or soft tissue outside of the operative setting, especially in a bloody field, risks the possibility of injury to surrounding structures.

Copious irrigation, especially of wounds with significant foreign material, is of paramount importance in preventing wound infection. Devitalized tissue, when present, should be debrided judiciously with a focus on maximal preservation of soft tissue. Photo documentation is an important aspect of documenting characteristics of the wound and can be important in serial assessments of the wound over the course of staged treatments and if there is any concern for child abuse.

Thinner subcutaneous tissues in children offer less cushion and a seemingly superficial laceration may in actuality represent a complex tissue injury. One must not hesitate to fully assess the depth of wounds while cleaning the wound to avoid missing the full extent of the injury. In some instances, the examination may require anesthetic techniques to accomplish these goals. The case in Fig. 4 is an example of a toddler who presented to the emergency department after a fall against the edge of a coffee table. Exploration of the wound in the operating room revealed that the laceration of the columella extended to both medial crura. Repair of the medial crura and primary closure of the columellar skin was then performed in the operating room (Fig. 4).

The guidelines for prescribing antimicrobial therapy have varied over time but more recent evidence-based recommendations are available based on organisms typically cultured from wounds that became infected. Simple wounds that have been cleaned, irrigated, and closed adequately do not routinely require systemic antibiotics but topical antimicrobial agents have been shown to provide a moist environment for healing and also decrease chance of infection. Prophylactic systemic antibiotics are indicated in specific cases, namely animal or human bites, deep contaminated wounds, or injuries with delayed presentation. Coverage of community-acquired methicillin-resistant *Staphylococcus aureus* strains (MRSA) should be considered in areas where there are high rates of antibiotic-resistant bacteria. The American Academy of Pediatrics Red Book Report of the Committee on Infectious Diseases provides a guideline for antimicrobial therapy in soft tissue trauma situations. In general, the wound status (clean, clean-contaminated, contaminated, infected) and mechanism of injury are the main considerations for antibiotic prophylaxis and duration of therapy. Cat bites, though much less frequent than dog bites, are also prone to infection. As most infected mammalian bite wounds are polymicrobial in nature, the most common initial treatment of choice is amoxicillin-clavulanic acid. However, the addition of trimethoprim-sulfamethoxazole, which is effective against *S. aureus* (including MRSA), *Pasteurella multocida*, and *Eikenella corrodens*, should be considered in animal bite wounds. For fresh wounds, a 3- to 5-day course of antibiotic therapy is generally sufficient, but more severe or infected wounds may require a 7- to 10-day course of therapy.

For animal bite wounds, potential transmission of rabies must be considered from wild animals, especially bats or carnivores, or from a domestic animal with uncertain immunization status. Improved canine vaccination programs and stray animal control has led to a marked decrease in domestic animal rabies cases in the United States since World War II. The Advisory Committee on Immunization Practices and World Health Organization recommendations for post exposure prophylaxis, which includes human rabies immunoglobulin and vaccination, depend on the availability of the animal for observation or rabies testing. For most other carnivores (e.g., skunks, raccoons, and foxes) and bats, immediate prophylaxis should be considered unless the animal has been proven negative by a laboratory test. Notification of public health officials is recommended if there is uncertainty. Assessment for hepatitis B virus infection and risk of human deficiency virus should be considered in human bite wounds.
In open or contaminated (e.g., dirt, soil, or saliva) wounds, determination of the tetanus immunization status and early treatment of the wound are important steps.31 The risk of tetanus infection is highest in puncture wounds, crush injuries, avulsions, and burns.31 Even in clean wounds, tetanus toxoid should be administered if the patient has had 3 or fewer immunizations or it has been 10 years since the last immunization.31

The decision as to the setting for repair—in the emergency department/outpatient office setting or the operating room—must take several factors into account. In children, repair in the emergency room can be challenging due to movement and intolerance of pain. Resources and staff who can perform sedation in the ED should be available.32,33 This factor is essential for safe wound repair. Injuries that should be considered for repair in the operating room include soft tissue injury or loss involving multiple facial subunits or a large surface area loss; active bleeding that cannot be controlled with conservative measures; inability to fully assess or complete the repair; absence of access to local anesthesia; and need to repair other structures including nerves, vessels, or muscle or wounds that involve full-thickness tissue breaches. We will review the anesthesia options, from topical and intralesional injection to conscious sedation and general anesthesia.

Management

Pediatric Anesthesia

Principles of pediatric anesthesia for soft tissue injuries must be considered in the context of an unscheduled procedure. Time is of the essence due to the urgent nature of the patient presentation and its emergent characteristic. Sedation in children is often administered to relieve pain and anxiety as well as to obtain immobility as to allow for safe completion of a procedure.34 A child’s ability to control their own behavior to cooperate for a procedure depends on the chronological age and the cognitive/emotional development.35

Many brief procedures may be accomplished with distraction, parental presence, and guided imagery techniques, along with the use of topical/local anesthetics and minimal sedation, if needed. However, longer procedures that require immobility, especially when involving children younger than 6 years old or those with developmental delay, often require an increased depth of sedation.34 Prevention of pulmonary aspiration is part of the preparation of a patient who will undergo sedation because upper airway protective reflexes may be impaired. There are different guidelines concerning fasting periods. The American College of Emergency Physicians recommends a baseline fasting of 3 hours and then variable timing depending on the urgency of the procedure and planned depth of sedation.34 The American Society of Anesthesiology (ASA) determines fasting periods of 2 hours for clear liquids, 4 hours for breast milk, 6 hours for infant formulas, and 8 hours for solid foods for nonemergent cases.36

A hallmark of procedural sedation is the concept of a sedation continuum, that is, that all sedatives and opioids, depending upon dose and patient response, are capable of producing any sedation depth along the scale from minimal sedation to general anesthesia.34 The characterization of depth of sedation levels is conventionally based on responsiveness to verbal or tactile stimulation, and has secondary ventilatory characteristics.

Minimal sedation or anxiolysis is a drug-induced state during which patients respond normally to verbal commands. Although cognitive function and physical coordination may be impaired, airway reflexes, ventilatory, and cardiovascular functions are unaffected.37 Moderate sedation/analgesia (“conscious sedation”) is a drug-induced depression of consciousness during which patients respond purposefully to verbal commands, either alone or accompanied by light tactile stimulation. Deep sedation/analgesia is a drug-induced depression of consciousness during which patients cannot be easily aroused but respond purposefully following repeated or painful stimulation. The ability to independently maintain ventilatory function may be impaired. Patients may require assistance in maintaining a patent airway, and spontaneous ventilation may be inadequate. Cardiovascular function is usually maintained.37

It is common for children to pass from the intended level of sedation to a deeper, unintended one, making the concept of rescue essential to safe sedation. Practitioners of sedation must have the skills to rescue the patient from a deeper level than that intended for the procedure.35 Patients who are ASA classes I and II are generally considered appropriate candidates for minimal, moderate, and deep sedation. Children in ASA classes III and IV, children with special needs, and those with anatomic airway abnormalities or moderate-to-severe tonsillar hypertrophy present issues that require additional considerations, especially for moderate and deep sedation.38 Children younger than 6 years old, in particular those younger than 6 months old, are at greatest risk of adverse events.39 They are particularly vulnerable to the sedating medication’s effects on respiratory drive, airway patency, and protective airway reflexes.40 During procedural sedation and analgesia, a nurse or other qualified individual should be present to continually observe and monitor the patient, in addition to the provider performing the procedure.34 The practitioner who uses sedation must have immediately available facilities, personnel, and equipment to manage emergency and rescue situations.41 The most common complications of sedation involve compromise of the airway or depressed respirations resulting in airway obstruction, hypoventilation, laryngospasm, hypoxemia, and apnea.41 Rescue techniques require specific training and skills.34,35 These include the ability to open the airway, suction secretions; provide CPAP; perform successful bag-valve-mask ventilation; insert an oral airway, a nasopharyngeal airway, or a laryngeal mask airway; and, rarely, perform tracheal intubation. An emergency cart or kit must be immediately accessible. It must contain the necessary age- and size-appropriate equipment for resuscitation.35

Before the administration of sedative medications, a baseline determination of vital signs should be documented. There should be continuous monitoring of oxygen saturation and heart rate.35 Ventilatory adequacy is verified through close observation of the airway, supplemented with physiologic
monitoring of oxygenation (pulse oximetry) and ventilation (capnography). Monitoring of blood pressure is also required but may be postponed until the child is sedated if the cuff insufflation may cause arousal or agitation.

The child who has received moderate or deep sedation must be observed in a suitably equipped recovery area. Such an area must have the capacity to deliver >90% of oxygen and positive-pressure ventilation (bag-valve-mask), as well as a functioning suction apparatus. If the patient is not fully alert, oxygen saturation and heart rate should be continuously monitored. The child should be observed until complete return to baseline.\(^\text{35}\) A simple evaluation tool may be the child’s ability to remain awake for at least 20 minutes when placed in a quiet environment.\(^\text{42}\) The practitioner responsible for the treatment of the patient and/or the administration of drugs for sedation must be familiar with the drugs they intend to use and competent to manage complications.\(^\text{34,43,44}\)

(see \(\text{Table 1}\).)

Reconstructive Ladder in Children

The reconstructive ladder that conceptualizes the order in which treatment options for soft tissue wounds should be considered can be utilized in pediatric patients in the way that it is in adults. There are unique factors in the pediatric patient population that compel the surgeon to think about the specific application of these reconstructive guidelines.\(^\text{45}\) The reconstructive “finish line” in a pediatric patient is potentially on the order of years rather than months as one must factor in the role of continued facial growth that is not a variable in adult patients. The age at which the injury occurs may preclude single-stage reconstruction in lieu of staged procedures. Different levels of donor site morbidity for children, whether harvesting grafts or flaps, may impose limitations that do not exist in the adult patient. Parental concerns and the necessary compliance of a young patient can also influence the options that may be considered acutely. The psychological strain of an acute facial injury, while more challenging to quantify, should also be in the forefront of mind for surgeons as they travel the journey to full rehabilitation of the injury with patients and their families.

Reconstruction of cleft lip/nasal deformities provides several lessons about the importance of surgical staging and the negative impact of scarring on future growth.\(^\text{46}\) The patient in \(\text{Fig. 5}\) had repair of a left unilateral cleft lip/nasal deformity and presented to our institution with several concerns including left nasal obstruction. An alarotomy used to help medialize the nostril was brought into the alar facial groove. Rather than the often-described lateral displacement of the nostril on the cleft side as a residual concern after repair, this patient’s cleft-side nostril is stenotic.\(^\text{47}\) This is possibly related to overly aggressive advancement of the ala and scarring at this important junction between the nose and the face. One important modification of cleft lip repair techniques has been to limit the extent of any incisions into the alar facial crease to prevent narrowing of the nostril and avoid the extent to which scar tissue can present an obstacle for growth of the nose.\(^\text{46,48,49}\)

Time-tested descriptions that define the extent of soft tissue losses (skin/muscle/cartilage/mucosal lining/nerve) and the facial subunits involved can provide an initial understanding of the wound that may have to be modified if intraoperative exploration is undertaken. Classification schemes of complex facial soft tissue trauma secondary to dog bites have been proposed.\(^\text{50}\) As seen in \(\text{Fig. 6}\), transection of the facial nerve can result from penetrating wounds of the cheek. Nerve exploration is indicated if the initial assessment reveals weakness of all or individual branches of the facial nerve. Immediate repair of the facial nerve via primary neurorrhaphy or with a nerve graft if tension free closure is not possible will yield the best outcome.\(^\text{51}\)

Soft tissue injuries that result in tissue loss are some of the most challenging encountered in soft tissue facial trauma. Immediate skin grafting may be the most appropriate first step with plans for delayed flap closure. The availability of dermal allografts provides an excellent option in the right patient as donor site morbidity is avoided and scar contracture can be minimized until definitive soft tissue repair is scheduled. \(\text{Fig. 7}\) shows a patient who suffered a dog bite to the left perioral area. An allograft (NEOX \(\text{https://amniomedical.com/neox-wound-allograft/})\) was applied to this wound acutely. Secondary repair consisted of scar revision 6 months later. Rotational flaps may need to be performed primarily in the setting of tissue loss and in some instances, free tissue transfer is performed acutely when a massive tissue loss is present. Good results have been shown for both acute and delayed free tissue transfer in facial trauma patients.\(^\text{52,53}\)

Perinatal nasal injury: Unique characteristics of the neonatal face include thin, pliable soft tissues amenable to molding that can improve congenital anomalies. Upper lip taping and nasoalveolar molding are examples of techniques used to improve upper lip and nasal form prior to definitive cleft lip repair.\(^\text{46}\) Neonatal ear molding with tapes or splints can significantly improve auricular contour in patients with congenital ear anomalies.\(^\text{54}\) The effectiveness of these techniques is related to the unique soft tissue qualities in neonates and infants that are receptive to molding and orthopaedic treatments. Though the pliability of the neonatal soft tissues can be harnessed as the basis of initial presurgical therapies, this exact quality makes facial soft tissues in neonates and infants more vulnerable to ulceration, pressure necrosis, and scarring when exposed to unplanned compression.\(^\text{21}\) Lacerations and resulting scarring, especially when not managed acutely, can result in secondary deformity in the growing face of a child.

The use of nCPAP for airway support in neonates in the NICU has resulted in fewer premature infants requiring prolonged airway intubation.\(^\text{22}\) The prongs of an nCPAP unit, which are firm and rigid, can compress the columella, ala, and soft tissue triangle of the nasal base causing a spectrum of injuries from ulceration to ischemic necrosis.\(^\text{21,22}\) Fibrosis from chronic irritation of prongs in the nose can inhibit growth of these areas, resulting in secondary deformities as the child’s face grows.\(^\text{55}\) Patients will present for the evaluation of these injuries acutely if they are recognized by the NICU team or at later stages in life from...
Table 1 Drugs used for local infiltration and sedation

<table>
<thead>
<tr>
<th>Drug</th>
<th>Drug class/mechanism of action</th>
<th>Dose/route</th>
<th>Duration of action</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lidocaine</td>
<td>Amide local anesthetic stabilizes neuronal membrane by binding to voltage-gated sodium channels</td>
<td>Max dose: 4.5 mg/kg without epinephrine 7 mg/kg with epinephrine Subcutaneous infiltration, field blocks</td>
<td>Duration: 90–200 min</td>
<td>Maximum dose should be calculated before administration43</td>
</tr>
<tr>
<td>Bupivacaine</td>
<td>Amide local anesthetic</td>
<td>Max dose: 2.5 mg/kg without epinephrine 3 mg/kg with epinephrine Subcutaneous infiltration, field blocks</td>
<td>Duration: 180–600 min</td>
<td>Maximum dose should be calculated before administration43</td>
</tr>
<tr>
<td>Lidocaine–prilocaine</td>
<td>Eutectic mixture of local anesthetics (EMLA) 2.5% lidocaine and 2.5% prilocaine cream</td>
<td>Max surface area: Weight <10kg: 100 cm² Weight 10–20 kg: 600 cm² Weight >20 kg: 2000 cm² Topical</td>
<td>Onset: 1 h Duration: Persists 1–2 h after removal Onset on mucosa: 5–10 min</td>
<td>Should be applied under occlusive dressing for at least an hour Absorption of excessive prilocaine may cause methemoglobinemia, if applied on mucosal surfaces44</td>
</tr>
<tr>
<td>Lidocaine–tetracaine</td>
<td>Combination of amide (lidocaine) and ester (tetracaine) local anesthetic 4% Lidocaine, 0.05% epinephrine, 0.5% tetracaine (LET) gel</td>
<td>Max area: Wounds up to 6 cm Topical</td>
<td>Onset: 15–30 min</td>
<td>Apply to nonmucosal wound uncovered for 20–30 min Avoid end-arteriolar parts of the body (due to epinephrine)</td>
</tr>
<tr>
<td>Midazolam</td>
<td>Benzodiazepine acts on the GABA receptor (major inhibitory neurotransmitter)</td>
<td>0.25–0.75 mg/kg PO 0.05 mg/kg IV</td>
<td>Onset: 15–30 min Duration: 60–90 min Onset: 1–3 min Duration: 60–90 min</td>
<td>Anxiolytic, provides anterograde amnesia No analgesic properties If combined with opioids may potentiate respiratory depression44</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>Opioid, 100 times more potent than morphine</td>
<td>0.5–2 µg/kg IV 1.5 µg/kg intranasally</td>
<td>Onset: 1–2 min Duration: 30–60 min</td>
<td>Analgesic response to fentanyl is highly variable May cause respiratory depression, bradycardia, hypotension, nausea and vomiting43</td>
</tr>
<tr>
<td>Propofol</td>
<td>GABA-A receptor agonist</td>
<td>1–2.5 mg/kg IV bolus 50–250 µg/kg/min IV infusion</td>
<td>Onset: 30 s Duration: 5–15 min</td>
<td>Significant decreases in systemic vascular resistance, stroke volume, and cardiac output Causes respiratory depression; potent bronchodilator Causes pain on injection</td>
</tr>
<tr>
<td>Etomidate</td>
<td>GABA-A receptor agonist</td>
<td>0.1–0.4 mg/kg IV</td>
<td>Onset: <1 min Duration: 5–15 min</td>
<td>Safe hemodynamic profile but no analgesic effect Associated with adrenal suppression (~12 h), pain on injection, postoperative nausea and vomiting43</td>
</tr>
<tr>
<td>Ketamine</td>
<td>Analog of phencyclidine NMDA receptor antagonist</td>
<td>1–2 mg/kg IV 3–4 mg/kg IM 4–6 mg/kg PO</td>
<td>Onset: 1 min Duration: 30–60 min Onset: 5 min Duration: 30–60 min Onset: 10–20 min Duration: 30–90 min</td>
<td>Causes “dissociative anesthesia,” in which patients are unconscious with eyes open, breathing spontaneously and do not react to painful stimuli. Causes delirium, marked nystagmus, hallucinations43 Anticholinergics may be used to prevent increased secretions44</td>
</tr>
<tr>
<td>Dexmedetomidine</td>
<td>Alpha-2 adrenergic agonist</td>
<td>1–2 µg/kg IV bolus (over 10 min) 0.5–2 µg/kg/h infusion</td>
<td>Onset: 10 min Duration: Clinical 30 min–1 h Half-life: 1.5–3 h44</td>
<td>Limited respiratory antidepressant effects Side effects are bradycardia, hypotension43 dose-dependent. Mimics natural sleep Caution with digitalis medications</td>
</tr>
</tbody>
</table>

Abbreviations: IM, intramuscular; IV, intravenous; PO, per os.
school age to young adulthood for definitive treatment (Fig. 8). Several reconstructive options have been proposed to manage columellar necrosis including full-thickness skin graft, composite auricular graft and local flaps from the nose, upper lip, or cheek. \(^{56-62}\) More complex deformities involving the soft tissue triangle or ala may incorporate these techniques or may require free grafts with local flaps or regional interpolated flaps from the forehead or cheek. \(^{63}\) Reports indicate that more than 10% of patients treated with nCPAP developed nasal injuries that could develop as soon as 7 days after the initiation of therapy. \(^{22}\) Children at greatest risk are preterm and/or low birthweight. Calls for routine use of hydrocolloid barriers to protect the nasal soft tissues are based on reports of decreased rates of nasal injury with their routine use in patients on nCPAP. \(^{21,64-66}\) The patient in Fig. 9 presented at age 18 years with a right nasal obstruction and a secondary nasal deformity following nCPAP treatment as a neonate. The right alar base is medialized, there is a scar of the soft tissue triangle and depression of the alar rim. Reconstruction included release of the scar of the soft tissue facet, placement of an auricular cartilage rim graft, and lateralization of the ala and widening of the nostril sill using a peri-alar cheek flap (Fig. 10). A review of patients with nasal injuries secondary to CPAP use reported that the majority of patients had more than one procedure and the mean age of the initial procedure was 7.2 years. \(^{67}\)

Lacerations of the nasal base may occur during childbirth. A forceps-assisted delivery or other instrument-related insult could result in a soft tissue injury. Immediate recognition and repair or regular wound care are required to prevent scar formation. Scar contraction of the alar rim can result in retraction or cicatricial scar formation leading to vestibular stenosis. \(^{68-70}\) In a neonate who is an obligate nasal breather, nostril stenosis can have significant airway consequences. The case in Fig. 11 presented after a traumatic delivery resulted in a laceration across the nasal base, extending onto the columella. The laceration was not immediately repaired and thick scabbing formed in the area followed by scar contracture weeks later. The patient presented to the pediatrician with increased work of breathing during feeding. Operative management for this case involved submucosal debridement of the scar, nostril dilation, triamcinolone

Fig. 5 Left nasal obstruction presenting after prior repair of left unilateral cleft lip/nasal deformity.

Fig. 6 Severe soft tissue trauma after penetrating wounds to the cheek with exposed facial nerve branch: (A) presentation and (B) postoperative view.
injection of the scar bed, and placement of a nostril conformer (Fig. 12). A second Kenalog injection and dilation was performed 2 months later and the patient used the nostril conformer for 4 months. His 6 months and 4 years follow-up results are shown (Fig. 13). No further procedures have been required. Early conservative management focusing on scar release can improve nostril diameter and prevent scar restriction on future nasal growth.71–73

Conclusion

Pediatric patients are vulnerable to soft tissue injuries of the face with some unique causes that require continued attention to preventive measures. Some of the most vulnerable patients are premature, low-birth weight infants who must be protected from postnatal facial injuries that may be the unfortunate sequelae of life-saving medical interventions. It is important to advocate for regulations that will keep children safe including continued support for protections in automobiles and during sports activities. Parents and the
public must continue to be educated about the dangers that dogs pose to young children. Staged reconstructive procedures and long follow-up periods are important aspects of care for complex facial wounds in the pediatric population.

Conflict of Interest
None declared.

References
20 Nelson KA. One city’s experience: why pit bulls are more dangerous and breed-specific legislation in justified. Municipal Lawyer 2005;46:12
Facial Soft Tissue Injuries in Pediatric Patients

Schild et al.

Apfelbaum JL, Schaumburg AM, et al. Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American Society of Anesthesiologists task force on preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration. Anesthesiology 2017;126(03):376–393

American Society of Anesthesiology Committee on Quality Management and Departmental Administration. Continuum of Depth of Sedation: Definition of General Anesthesia and Levels of Sedation/Analgesia. 2019

Timashpolsky A, Butts SC. Nasal continuous positive airway pressure injuries. JAMA Facial Plast Surg 2019;21(02):165–166

Son D, Kwak M, Yun S, Yeo H, Kim J, Han K. Large auricular chondrocutaneous composite graft for nasal alar and columellar reconstruction. Arch Plast Surg 2012;39(04):323–328

Burget G. Aesthetic Reconstruction of the Child’s Nose. Chicago: Gary Burget Publisher; 2012

